In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_(data_structure))
Your job is to tell if a given complete binary tree is a heap.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 100), the number of trees to be tested; and N (1 < N ≤ 1,000), the number of keys in each tree, respectively. Then M lines follow, each contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.
Output Specification:
For each given tree, print in a line Max Heap if it is a max heap, or Min Heap for a min heap, or Not Heap if it is not a heap at all. Then in the next line print the tree's postorder traversal sequence. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line.
Sample Input:
3 8
98 72 86 60 65 12 23 50
8 38 25 58 52 82 70 60
10 28 15 12 34 9 8 56
Sample Output:
Max Heap
50 60 65 72 12 23 86 98
Min Heap
60 58 52 38 82 70 25 8
Not Heap
56 12 34 28 9 8 15 10
一遍就ac的题,好爽^-^。本次题意:输入m和n,m代表有几组数据,n代表每组数据的个数,接下来输入m组数据,每组数据代表 一个二叉树的层序遍历序列,输出则是判断每组数据是大顶堆还是小顶堆,或者都不是,判断完,后序输出该二叉树。下面是代码
#include<iostream>
#include<vector>
int book;
using namespace std;
typedef struct node{
int data;
struct node *l,*r;
}tree;
tree* creat(int v[1001],int n,int i){
tree *root;
if(i > n){
root = NULL;
}else{
root = (tree *)malloc(sizeof(tree));
root->data = v[i];
root->l = creat(v,n,i*2);
root->r = creat(v,n,i*2+1);
}
return root;
}
void lrd(tree *root){
if(root == NULL){
return ;
}else{
lrd(root->l);
lrd(root->r);
if(book==0){
cout << root->data;
book = 1;
}else{
cout << " " << root->data;
}
}
}
int main(){
int m,n;
tree *root;
cin >> m >> n;
while(m--){
book = 0;
int fmax = 0,fmin = 0,flag = 0;
int v[1001];
for(int i = 1;i <= n;i++){
cin >> v[i];
}
root = creat(v,n,1);
for(int i = 2;i <= n;i++){
if(v[i/2] > v[i]){
fmax = 1;
}
else if(v[i/2] < v[i]){
fmin = 1;
}else{
flag = 1;
}
}
if(flag==1 || (fmax == 1 && fmin == 1)){
cout << "Not Heap" << endl;
}else if(fmax==1 && fmin != 1){
cout << "Max Heap" << endl;
}else if(fmin==1 && fmax != 1){
cout << "Min Heap" << endl;
}
lrd(root);
cout << endl;
}
return 0;
}
本文介绍了一种算法,用于判断给定的完全二叉树是否为最大堆或最小堆,并通过后序遍历输出树的结构。算法首先读取树的层级遍历序列,然后创建树结构,最后检查每个节点以确定堆类型。
&spm=1001.2101.3001.5002&articleId=86584459&d=1&t=3&u=761a86ab5f794b28ad701bfb7e65bba6)
470

被折叠的 条评论
为什么被折叠?



