python学习笔记

终端从c盘切换到d盘
直接输入d:

if name == ‘main‘:
name 是当前模块名,当模块被直接运行时模块名为 main 。这句话的意思就是,当模块被直接运行时,以下代码块将被运行,当模块是被导入时,代码块不被运行。

字典

类似map,形成key-value(key可以是字符串,元组等,不能为可变的)

创建方式:

  1. {key1:value1,…,keyn:valuen}
  2. 利用dict函数

字典无序存储

两个列表组成字典:aDict = dict(zip(aList,bList))

del dict[‘Name’]; # 删除键是’Name’的条目
dict.clear(); # 清空词典所有条目
del dict ; # 删除词典

元素的遍历:for keys in dict.keys():

dist.keys()输出所有的key
dist.value()输出所有的值

键查找值:dist.get()

可变长位置参数:一个*(元组)
可变长关键字参数:两个*(字典)


集合
无序的不重复的元素的组合

  • 可变集合(set)
  • 不可变集合(frozenset)
基于分布式模型预测控制的多个固定翼无人机一致性控制(Matlab代码实现)内容概要:本文围绕“基于分布式模型预测控制的多个固定翼无人机一致性控制”展开,采用Matlab代码实现相关算法,属于顶级EI期刊的复现研究成果。文中重点研究了分布式模型预测控制(DMPC)在多无人机系统中的一致性控制问题,通过构建固定翼无人机的动力学模型,结合分布式协同控制策略,实现多无人机在复杂环境下的轨迹一致性和稳定协同飞行。研究涵盖了控制算法设计、系统建模、优化求解及仿真验证全过程,并提供了完整的Matlab代码支持,便于读者复现实验结果。; 适合人群:具备自动控制、无人机系统或优化算法基础,从事科研或工程应用的研究生、科研人员及自动化、航空航天领域的研发工程师;熟悉Matlab编程和基本控制理论者更佳; 使用场景及目标:①用于多无人机协同控制系统的算法研究与仿真验证;②支撑科研论文复现、毕业设计或项目开发;③掌握分布式模型预测控制在实际系统中的应用方法,提升对多智能体协同控制的理解与实践能力; 阅读建议:建议结合提供的Matlab代码逐模块分析,重点关注DMPC算法的构建流程、约束处理方式及一致性协议的设计逻辑,同时可拓展学习文中提及的路径规划、编队控制等相关技术,以深化对无人机集群控制的整体认知。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值