Remainder
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 3849 Accepted Submission(s): 925
Problem Description
Coco is a clever boy, who is good at mathematics. However, he is puzzled by a difficult mathematics problem. The problem is: Given three integers N, K and M, N may adds (‘+’) M, subtract (‘-‘) M, multiples (‘*’) M or modulus (‘%’) M (The definition of ‘%’ is
given below), and the result will be restored in N. Continue the process above, can you make a situation that “[(the initial value of N) + 1] % K” is equal to “(the current value of N) % K”? If you can, find the minimum steps and what you should do in each
step. Please help poor Coco to solve this problem.
You should know that if a = b * q + r (q > 0 and 0 <= r < q), then we have a % q = r.
You should know that if a = b * q + r (q > 0 and 0 <= r < q), then we have a % q = r.
Input
There are multiple cases. Each case contains three integers N, K and M (-1000 <= N <= 1000, 1 < K <= 1000, 0 < M <= 1000) in a single line.
The input is terminated with three 0s. This test case is not to be processed.
The input is terminated with three 0s. This test case is not to be processed.
Output
For each case, if there is no solution, just print 0. Otherwise, on the first line of the output print the minimum number of steps to make “[(the initial value of N) + 1] % K” is equal to “(the final value of N) % K”. The second line print the operations to
do in each step, which consist of ‘+’, ‘-‘, ‘*’ and ‘%’. If there are more than one solution, print the minimum one. (Here we define ‘+’ < ‘-‘ < ‘*’ < ‘%’. And if A = a1a2...ak and B = b1b2...bk are both solutions, we say A < B, if and only if there exists
a P such that for i = 1, ..., P-1, ai = bi, and for i = P, ai < bi)
Sample Input
2 2 2 -1 12 10 0 0 0
Sample Output
0 2 *+
思路:显然的搜索题,直接BFS,不过问题在于我们不能步步对k取模,因为如果过程有%m%k结果不会跟总结果%k相等
那么怎么办呢? 没关系,我们每步都对m*k取模,然后最后对k取模即可。正确性显然。
还有一个问题,我一开始没注意到,被坑了一个小时啊.......
You should know that if a = b * q + r (q > 0 and 0 <= r < q), then we have a % q = r.
取模的结果>=0,也就是不会出来负数,这点要注意。
得到的是取模后最小的整数
代码:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string>
#include <cstring>
#include <cmath>
#include <queue>
using namespace std;
long long n,m,k;
int vis[1000005];
struct Node
{
string s;
int step;
long long num;
};
int bfs()
{
Node a,next;
a.step=0;
a.num=n;
a.s="";
queue<Node>que;
que.push(a);
memset(vis,0,sizeof(vis));
vis[(n%(m*k)+(m*k))%(m*k)]=1;
while(!que.empty())
{
Node now=que.front();
que.pop();
if((now.num%k+k)%k==((n+1)%k+k)%k)
{
printf("%d\n",now.step);
cout<<now.s<<endl;
return 1;
}
next=now;
next.step=now.step+1;
next.num=(next.num+m)%(m*k);
next.num=(next.num+(m*k))%(m*k);
next.s+="+";
if(!vis[next.num])
{
vis[next.num]=1;
que.push(next);
}
next=now;
next.step=now.step+1;
next.num=(next.num-m)%(m*k);
next.num=(next.num+(m*k))%(m*k);
next.s+="-";
if(!vis[next.num])
{
vis[next.num]=1;
que.push(next);
}
next=now;
next.step=now.step+1;
next.num=(next.num*m)%(m*k);
next.num=(next.num+(m*k))%(m*k);
next.s+="*";
if(!vis[next.num])
{
vis[next.num]=1;
que.push(next);
}
next=now;
next.step=now.step+1;
next.num=(next.num%m+m)%m%(m*k);
next.num=(next.num+(m*k))%(m*k);
next.s+="%";
if(!vis[next.num])
{
vis[next.num]=1;
que.push(next);
}
}
return -1;
}
int main()
{
while(~scanf("%lld %lld %lld",&n,&k,&m)&&(n||m||k))
{
if(bfs()==-1) printf("0\n");
}
return 0;
}

本文介绍了一道数学问题的求解方法,通过使用广度优先搜索(BFS)算法来找到使特定数学表达式成立所需的最少步骤。文章详细解释了问题背景、解决思路及实现代码。
686

被折叠的 条评论
为什么被折叠?



