hdu 4956 Poor Hanamichi(枚举)

汉姆奇难题解析
本文介绍了一道关于求解特定范围内数字属性的问题,通过分析数字的奇偶位数之和来找出符合特定条件的数字数量,并提供了一种验证解决方案正确性的方法。

Poor Hanamichi

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 895    Accepted Submission(s): 408


Problem Description
Hanamichi is taking part in a programming contest, and he is assigned to solve a special problem as follow: Given a range [l, r] (including l and r), find out how many numbers in this range have the property: the sum of its odd digits is smaller than the sum of its even digits and the difference is 3.

A integer X can be represented in decimal as:
X=An×10n+An1×10n1++A2×102+A1×101+A0
The odd dights are A1,A3,A5 and A0,A2,A4 are even digits.

Hanamichi comes up with a solution, He notices that:
102k+1 mod 11 = -1 (or 10), 102k mod 11 = 1, 
So X mod 11 
(An×10n+An1×10n1++A2×102+A1×101+A0)mod11
An×(1)n+An1×(1)n1++A2A1+A0
= sum_of_even_digits – sum_of_odd_digits
So he claimed that the answer is the number of numbers X in the range which satisfy the function: X mod 11 = 3. He calculate the answer in this way : 
Answer = (r + 8) / 11 – (l – 1 + 8) / 11.

Rukaw heard of Hanamichi’s solution from you and he proved there is something wrong with Hanamichi’s solution. So he decided to change the test data so that Hanamichi’s solution can not pass any single test. And he asks you to do that for him.
 

Input
You are given a integer T (1 ≤ T ≤ 100), which tells how many single tests the final test data has. And for the following T lines, each line contains two integers l and r, which are the original test data. (1 ≤ l ≤ r ≤ 1018)
 

Output
You are only allowed to change the value of r to a integer R which is not greater than the original r (and R ≥ l should be satisfied) and make Hanamichi’s solution fails this test data. If you can do that, output a single number each line, which is the smallest R you find. If not, just output -1 instead.
 

Sample Input
3 3 4 2 50 7 83
 

Sample Output
-1 -1 80

思路:直接枚举即可

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
int check(long long k)
{
    long long l=k;
    int num=0;
    while(l)
    {
        l/=10;
        num++;
    }
    int lsum=0,rsum=0,flag=0;
    while(k)
    {
        if(!flag) rsum+=k%10;
        else lsum+=k%10;
        k/=10;
        flag=!flag;
    }
    if(rsum==lsum+3) return 1;
    return 0;
}
int main()
{
    int T;
    long long l,r;
    scanf("%d",&T);
    while(T--)
    {
            scanf("%lld %lld",&l,&r);
            long long num=0,v;
            long long flag=0;
            for(long long i=l; i<=r; i++)
            {
                if(check(i)) num++;
                v=(i+8)/11-(l+7)/11;
                if(v!=num)
                {
                    flag=i;
                    break;
                }
            }
            if(flag) printf("%lld\n",flag);
            else printf("-1\n");
    }
    return 0;
}


提供了基于BP(Back Propagation)神经网络结合PID(比例-积分-微分)控制策略的Simulink仿真模型。该模型旨在实现对杨艺所著论文《基于S函数的BP神经网络PID控制器及Simulink仿真》中的理论进行实践验证。在Matlab 2016b环境下开发,经过测试,确保能够正常运行,适合学习和研究神经网络在控制系统中的应用。 特点 集成BP神经网络:模型中集成了BP神经网络用于提升PID控制器的性能,使之能更好地适应复杂控制环境。 PID控制优化:利用神经网络的自学习能力,对传统的PID控制算法进行了智能调整,提高控制精度和稳定性。 S函数应用:展示了如何在Simulink中通过S函数嵌入MATLAB代码,实现BP神经网络的定制化逻辑。 兼容性说明:虽然开发于Matlab 2016b,但理论上兼容后续版本,可能会需要调整少量配置以适配不同版本的Matlab。 使用指南 环境要求:确保你的电脑上安装有Matlab 2016b或更高版本。 模型加载: 下载本仓库到本地。 在Matlab中打开.slx文件。 运行仿真: 调整模型参数前,请先熟悉各模块功能和输入输出设置。 运行整个模型,观察控制效果。 参数调整: 用户可以自由调节神经网络的层数、节点数以及PID控制器的参数,探索不同的控制性能。 学习和修改: 通过阅读模型中的注释和查阅相关文献,加深对BP神经网络与PID控制结合的理解。 如需修改S函数内的MATLAB代码,建议有一定的MATLAB编程基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值