hdu 2639 Bone Collector II(求第k优解 01背包)

Bone Collector II



Problem Description
The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup" competition,you must have seem this title.If you haven't seen it before,it doesn't matter,I will give you a link:

Here is the link: http://acm.hdu.edu.cn/showproblem.php?pid=2602

Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.

If the total number of different values is less than K,just ouput 0.
 

Input
The first line contain a integer T , the number of cases.
Followed by T cases , each case three lines , the first line contain two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the number of bones and the volume of his bag and the K we need. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
 

Output
One integer per line representing the K-th maximum of the total value (this number will be less than 2 31).
 

Sample Input
  
  
3 5 10 2 1 2 3 4 5 5 4 3 2 1 5 10 12 1 2 3 4 5 5 4 3 2 1 5 10 16 1 2 3 4 5 5 4 3 2 1
 

Sample Output
  
  
12 2 0
 

题意: 有n件物品,每件物品有体积和价值已知, 一个小偷带着一个大小为v的背包,要偷这些东西,问小偷能偷的第k大的价值是多少?
解析: 这题和典型的01背包求最优解不同,是要求第k大的解,所以,最直观的想法就是在01背包的基础上再增加一维,用来保存前k大小的数,然后         在递推时,根据前一个状态的前 k  大的数推出下一个阶段的前k个数保存下来。
       d[i][j][k], 表示取前i个物品,用j的费用,第k大价值是多少
        在递推dp[i][v][1...k]时,先获取上一个状态d[i-1][j][1...k]递推出来所有的值:

    即集合A={dp[i-1][j-v[i]][p]+w[i], 1<=p<=k}, 还有原来的值集合B={dp[i-1][j][p], 1<=p<=k}

    然后把集合A和B中的前k大的值按从大到小顺序赋值给d[i][j][1...k],

    这一步骤可以用归并排序中的合并方法,因为集合A和B一定是按照从大到小的顺序排列的。

AC代码:

#include<stdio.h>
#include<string.h>
struct stu{
    int v,w;
}a[105];
int main()
{
    int i,j,k,T,m,n,v,x,y,z,dp[1005][35],d1[35],d2[35];
    scanf("%d",&T);
    while(T--){
        scanf("%d%d%d",&n,&v,&k);
        for(i=1;i<=n;i++)
            scanf("%d",&a[i].w);
        for(i=1;i<=n;i++)
            scanf("%d",&a[i].v);
        memset(dp,0,sizeof(dp));
        memset(d1,0,sizeof(d1));
        memset(d2,0,sizeof(d2));
        for(i=1;i<=n;i++)
            for(j=v;j>=a[i].v;j--){
                for(m=1;m<=k;m++){
                    d1[m]=dp[j][m];
                    d2[m]=dp[j-a[i].v][m]+a[i].w;
                }
                d1[m]=d2[m]=-1;
                x=y=z=1;
                while((d1[x]!=-1||d2[y]!=-1)&&z<=k){
                    if(d1[x]>d2[y])
                        dp[j][z]=d1[x++];
                    else
                        dp[j][z]=d2[y++];
                    if(dp[j][z-1]!=dp[j][z])
                        z++;
                }
            }
        printf("%d\n",dp[v][k]);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值