汉诺塔IV

题目来源:hdu2077

汉诺塔IV

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4240    Accepted Submission(s): 3125


Problem Description
还记得汉诺塔III吗?他的规则是这样的:不允许直接从最左(右)边移到最右(左)边(每次移动一定是移到中间杆或从中间移出),也不允许大盘放到小盘的上面。xhd在想如果我们允许最大的盘子放到最上面会怎么样呢?(只允许最大的放在最上面)当然最后需要的结果是盘子从小到大排在最右边。
 

Input
输入数据的第一行是一个数据T,表示有T组数据。
每组数据有一个正整数n(1 <= n <= 20),表示有n个盘子。
 

Output
对于每组输入数据,最少需要的摆放次数。
 

Sample Input
  
2 1 10
 

Sample Output
  
2 19684
 

Author
xhd
 

Source
 
解析:
1.移动规则
   用a[i]表示间隔移动 i 个盘子所需次数(A——>C 或者 C——>A)
   用b[i]表示从A——>B 或者 B——>A 移动 i 个盘子所需次数
   用c[i]表示从B——>A 或者 B——>A 移动 i 个盘子所需次数

   ①i-1 个盘子从A——>B,移动次数b[i-1];
   ②i 号盘子从A——>B——>C,移动次数 2 ;
   ③i-1 个盘子从B——>C,移动次数c[i-1];

2.递推公式:   ans[n]=b[n-1]+c[n-1]+2;
   则有:
            ①a[i]=a[i-1]+1+a[i-1]+1+a[i-1]
     1) i-1 个盘子从A——>C,移动次数a[i-1];
               2)i 从A——>B,移动次数 1 ;
               3) i-1 个盘子从C——>A,移动次数a[i-1];
               4) i 从B——>C,移动次数 1 ;
               5) i-1个盘子从A——>C,移动次数a[i-1];
               
            ②b[i]=a[i-1]+1+b[i-1];
                 1)i-1个盘子从A——>C,移动次数 a[i-1];
                 2)i 从A——>B,移动次数 1 ;
                 3)i-1 个盘子从C——>B,移动次数 b[i-1]; 
       
            ③c[i]=c[i-1]+1+a[i-1];
                1)i-1 个盘子从B——>A,移动次数 c[i-1] ;
                2)i 从B——>C,移动次数 1 ;
                3)i-1 个盘子从A——>C ,移动次数 a[i-1] ;

3.通项公式:ans[i]=3^(i-1) + 1;

    首先,求得a[]的通项公式 : a[i]=3^i - 1;

    然后求得: b[i]=(3^i -1)/2

                       c[i]=(3^i -1)/2

   最后求得ans[i]=3^(i-1) + 1;


递推公式代码:

  1. #include<cstdio>  
  2. #define maxn 20  
  3. using namespace std;  
  4.   
  5. long long a[maxn+10],b[maxn+10],c[maxn+10];  
  6.   
  7. void redirect()  
  8. {  
  9.   freopen("hdu2077.in","r",stdin);  
  10.   freopen("3hdu2077.out","w",stdout);  
  11. }  
  12.   
  13. void work()  
  14. {  
  15.   int t,n,i,j,k;  
  16.   a[1]=2,b[1]=1,c[1]=1;  
  17.   for(i=2;i<=maxn;i++)  
  18.     {  
  19.       a[i]=a[i-1]*3+2;  
  20.       b[i]=a[i-1]+b[i-1]+1;  
  21.       c[i]=c[i-1]+a[i-1]+1;  
  22.     }  
  23.       
  24.   while(scanf("%d",&t)==1)  
  25.     for(k=1;k<=t;k++)  
  26.       {  
  27.         scanf("%d\n",&n);  
  28.         printf("%I64d\n",b[n-1]+c[n-1]+2);  
  29.       }  
  30. }  
  31.   
  32. int main()  
  33. {  
  34.   redirect();  
  35.   work();  
  36.   return 0;  
  37. }  

通项公式代码:

[html]  view plain copy print ? 在CODE上查看代码片 派生到我的代码片
  1. </pre><pre name="code" class="cpp">#include<cstdio>  
  2. #define maxn 20  
  3. using namespace std;  
  4.   
  5. long long f[maxn+10];  
  6.   
  7. void redirect()  
  8. {  
  9.   freopen("hdu2077.in","r",stdin);  
  10.   freopen("2hdu2077.out","w",stdout);  
  11. }  
  12.   
  13. void work()  
  14. {  
  15.   int t,n,i,j,k;  
  16.   for(f[0]=i=1;i<=maxn;i++)f[i]=f[i-1]*3;  
  17.   while(scanf("%d",&t)==1)  
  18.     for(i=1;i<=t;i++)  
  19.       scanf("%d",&n),printf("%I64d\n",f[n-1]+1);   
  20. }  
  21.   
  22. int main()  
  23. {  
  24.   redirect();  
  25.   work();  
  26.   return 0;  
  27. }  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值