Time Limit: 2000MS | Memory Limit: 32768KB | 64bit IO Format: %I64d & %I64u |
Description
Here is the link: http://acm.hdu.edu.cn/showproblem.php?pid=2602
Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.
If the total number of different values is less than K,just ouput 0.
Input
Followed by T cases , each case three lines , the first line contain two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the number of bones and the volume of his bag and the K we need. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
Output
Sample Input
3 5 10 2 1 2 3 4 5 5 4 3 2 1 5 10 12 1 2 3 4 5 5 4 3 2 1 5 10 16 1 2 3 4 5 5 4 3 2 1
Sample Output
12 2 0
Source
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
struct Node
{
int price;
int val;
} node[1005];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n,v,k,i,dp[1005][31] = {0},a[31],b[31];
scanf("%d%d%d",&n,&v,&k);
for(i = 0; i<n; i++)
scanf("%d",&node[i].price);
for(i = 0; i<n; i++)
scanf("%d",&node[i].val);
int j;
for(i = 0; i<n; i++)
{
for(j = v; j>=node[i].val; j--)
{
int cnt = 0,d;
for(d = 1; d<=k; d++)//分别将放入第i个石头与不放第i个石头的结果存入a,b,数组之中
{
a[d] = dp[j-node[i].val][d]+node[i].price;
b[d] = dp[j][d];
}
int x,y,z;
x = y = z = 1;
a[d] = b[d] = -1;
while(z<=k && (x<=k || y<=k))//循环找出前K个的最优解
{
if(a[x] > b[y])
{
dp[j][z] = a[x];
x++;
}
else
{
dp[j][z] = b[y];
y++;
}
if(dp[j][z]!=dp[j][z-1])
z++;
}
}
}
printf("%d\n",dp[v][k]);
}
return 0;
}