hdu2639 Bone Collector II

本文介绍了一种求解0-1背包问题中第K优解的方法,并通过一个具体的示例进行了解释。该问题关注如何找到不同价值组合中的第K大价值,而不是最大价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Time Limit: 2000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u

 Status

Description

The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup" competition,you must have seem this title.If you haven't seen it before,it doesn't matter,I will give you a link:  

Here is the link:   http://acm.hdu.edu.cn/showproblem.php?pid=2602

Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.  

If the total number of different values is less than K,just ouput 0.
 

Input

The first line contain a integer T , the number of cases.  
Followed by T cases , each case three lines , the first line contain two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the number of bones and the volume of his bag and the K we need. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.  
 

Output

One integer per line representing the K-th maximum of the total value (this number will be less than 2   31).  
 

Sample Input

    
    
3 5 10 2 1 2 3 4 5 5 4 3 2 1 5 10 12 1 2 3 4 5 5 4 3 2 1 5 10 16 1 2 3 4 5 5 4 3 2 1
 

Sample Output

    
    
12 2 0
 

Source

百万秦关终属楚
 
 
 
分析:
0-1背包,这里要求的是第K优解。也是模板题,需要进一步理解透彻。
ac代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;

struct Node
{
    int price;
    int val;
} node[1005];

int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        int n,v,k,i,dp[1005][31] = {0},a[31],b[31];
        scanf("%d%d%d",&n,&v,&k);
        for(i = 0; i<n; i++)
            scanf("%d",&node[i].price);
        for(i = 0; i<n; i++)
            scanf("%d",&node[i].val);
        int j;
        for(i = 0; i<n; i++)
        {
            for(j = v; j>=node[i].val; j--)
            {
                int cnt = 0,d;
                for(d = 1; d<=k; d++)//分别将放入第i个石头与不放第i个石头的结果存入a,b,数组之中
                {
                    a[d] = dp[j-node[i].val][d]+node[i].price;
                    b[d] = dp[j][d];
                }
                int x,y,z;
                x = y = z = 1;
                a[d] = b[d] = -1;
                while(z<=k && (x<=k || y<=k))//循环找出前K个的最优解
                {
                    if(a[x] > b[y])
                    {
                        dp[j][z] = a[x];
                        x++;
                    }
                    else
                    {
                        dp[j][z] = b[y];
                        y++;
                    }
                    if(dp[j][z]!=dp[j][z-1])
                    z++;
                }
            }
        }
        printf("%d\n",dp[v][k]);
    }

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值