CSU-ACM暑假集训基础组训练赛(5-1) B - Problem B

BuggyD的魔法骰子与期望投掷次数
文章探讨了一个拥有n面的魔法骰子,如何通过期望投掷次数确保每个面至少出现一次。通过数学计算得出,对于特定的n值,所需投掷次数的期望值为一定数值。理解此概念有助于深入掌握概率论与期望值的计算。
B - Problem B
Time Limit:2000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu

Description

BuggyD loves to carry his favorite die around. Perhaps you wonder why it's his favorite? Well, his die is magical and can be transformed into an N-sided unbiased die with the push of a button. Now BuggyD wants to learn more about his die, so he raises a question:

What is the expected number of throws of his die while it has N sides so that each number is rolled at least once?

Input

The first line of the input contains an integer t, the number of test cases. t test cases follow.

Each test case consists of a single line containing a single integer N (1 <= N <= 1000) - the number of sides on BuggyD's die.

Output

For each test case, print one line containing the expected number of times BuggyD needs to throw his N-sided die so that each number appears at least once. The expected number must be accurate to 2 decimal digits.

Sample Input

Input:
2
1
12

Output:
1.00
37.24
<script type="text/javascript"> <script type="text/javascript" src="http://pagead2.googlesyndication.com/pagead/show_ads.js">






题目大意:
一个有n面的色子抛掷多少次能使所有面都能被抛到过,求期望值
总面数为n,当已经抛到过 i 个不同面时,我们抛出下一个不同面的概率为 (n-i)/n,那么抛的次数为 n/(n-i),
将所有抛出下个面的次数累加起来就好了


简单的模拟题,前提是读懂题意。代码:
#include <iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int main()
{
    int t,i,n;
    scanf("%d",&t);
    while(t--)
    {
        double s=0.0;
        scanf("%d",&n);
        for(i=0;i<n;i++)
        s+=double(n)/double(n-i);
        printf("%.2lf\n",s);
    }
    return 0;
}



总结:好好学习,天天向上。聪哥说: 不会只能怪高中老师了~~~



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值