ZOJ - 1709 Oil Deposits

本文介绍了一种使用深度优先搜索(DFS)算法结合邻接矩阵来解决油田探测问题的方法。任务是确定给定网格中独立油田的数量,其中每个油田由相邻的油井组成。通过递归地探索所有可能的邻接点来实现这一目标。
Time Limit: 2000MS Memory Limit: 65536KB 64bit IO Format: %lld & %llu

[]   [Go Back]   [Status]  

Description

The GeoSurvComp geologic survey company is responsible for detecting underground oil deposits. GeoSurvComp works with one large rectangular region of land at a time, and creates a grid that divides the land into numerous square plots. It then analyzes each plot separately, using sensing equipment to determine whether or not the plot contains oil. A plot containing oil is called a pocket. If two pockets are adjacent, then they are part of the same oil deposit. Oil deposits can be quite large and may contain numerous pockets. Your job is to determine how many different oil deposits are contained in a grid.


Input

The input file contains one or more grids. Each grid begins with a line containing m and n, the number of rows and columns in the grid, separated by a single space. If m = 0 it signals the end of the input; otherwise 1 <= m <= 100 and 1 <= n <= 100. Following this are m lines of n characters each (not counting the end-of-line characters). Each character corresponds to one plot, and is either `*', representing the absence of oil, or `@', representing an oil pocket.


Output

For each grid, output the number of distinct oil deposits. Two different pockets are part of the same oil deposit if they are adjacent horizontally, vertically, or diagonally. An oil deposit will not contain more than 100 pockets.


Sample Input

1 1
*
3 5
*@*@*
**@**
*@*@*
1 8
@@****@*
5 5 
****@
*@@*@
*@**@
@@@*@
@@**@
0 0


Sample Output

0
1
2
2





大致题意:给出一个图找出一共多少块油田。油田用‘@’表示,与它相邻的8个区域如果还有油田‘@’则视为一块。



dfs+邻接矩阵。入门的dfs,代码:

#include <iostream>
#include<cstdio>
using namespace std;
int n,m;
const int maxn=105;
char grid[maxn][maxn];
int dir[8][2]={
    {-1,-1},{-1,0},
    {-1,1},{0,-1},
    {0,1},{1,-1},
    {1,0},{1,1}
    };//一个点有八个方向,都要遍历。坐标作为界限判断
void dfs(int x,int y)
{
    int a,b,i;
    grid[x][y]='*';//若访问到,标记为’*‘,表示联通,防止重复访问
    for(i=0;i<8;i++)
    {
        a=x+dir[i][0];//更新x坐标
        b=y+dir[i][1];//更新y坐标
        if(a>=0&&a<m&&b>=0&&b<n&&grid[a][b]=='@') dfs(a,b);
    }
}
int main()
{
    int i,j;
    while(scanf("%d%d",&m,&n)!=EOF&&m!=0)
    {
        int ans=0;
        for(i=0;i<m;i++)
        scanf("%s",grid[i]);//不用两重循环,%s
        for(i=0;i<m;i++)
        for(j=0;j<n;j++)
        if(grid[i][j]=='@')
        {
            dfs(i,j);
            ans++;
        }
        printf("%d\n",ans);
    }
    return 0;
}

基于粒子群优化算法的p-Hub选址优化(Matlab代码实现)内容概要:本文介绍了基于粒子群优化算法(PSO)的p-Hub选址优化问题的研究与实现,重点利用Matlab进行算法编程和仿真。p-Hub选址是物流与交通网络中的关键问题,旨在通过确定最优的枢纽节点位置和非枢纽节点的分配方式,最小化网络总成本。文章详细阐述了粒子群算法的基本原理及其在解决组合优化问题中的适应性改进,结合p-Hub中转网络的特点构建数学模型,并通过Matlab代码实现算法流程,包括初始化、适应度计算、粒子更新与收敛判断等环节。同时可能涉及对算法参数设置、收敛性能及不同规模案例的仿真结果分析,以验证方法的有效性和鲁棒性。; 适合人群:具备一定Matlab编程基础和优化算法理论知识的高校研究生、科研人员及从事物流网络规划、交通系统设计等相关领域的工程技术人员。; 使用场景及目标:①解决物流、航空、通信等网络中的枢纽选址与路径优化问题;②学习并掌握粒子群算法在复杂组合优化问题中的建模与实现方法;③为相关科研项目或实际工程应用提供算法支持与代码参考。; 阅读建议:建议读者结合Matlab代码逐段理解算法实现逻辑,重点关注目标函数建模、粒子编码方式及约束处理策略,并尝试调整参数或拓展模型以加深对算法性能的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值