HDU - 1087 Super Jumping! Jumping! Jumping!

介绍了一种名为SuperJumping的游戏,玩家需从起点跳至终点并获取最大分数。通过动态规划算法找出最优路径,实现得分最大化。
Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u

[]   [Go Back]   [Status]  

Description

Nowadays, a kind of chess game called “Super Jumping! Jumping! Jumping!” is very popular in HDU. Maybe you are a good boy, and know little about this game, so I introduce it to you now. 



The game can be played by two or more than two players. It consists of a chessboard(棋盘)and some chessmen(棋子), and all chessmen are marked by a positive integer or “start” or “end”. The player starts from start-point and must jumps into end-point finally. In the course of jumping, the player will visit the chessmen in the path, but everyone must jumps from one chessman to another absolutely bigger (you can assume start-point is a minimum and end-point is a maximum.). And all players cannot go backwards. One jumping can go from a chessman to next, also can go across many chessmen, and even you can straightly get to end-point from start-point. Of course you get zero point in this situation. A player is a winner if and only if he can get a bigger score according to his jumping solution. Note that your score comes from the sum of value on the chessmen in you jumping path. 
Your task is to output the maximum value according to the given chessmen list. 
 

Input

Input contains multiple test cases. Each test case is described in a line as follow: 
N value_1 value_2 …value_N 
It is guarantied that N is not more than 1000 and all value_i are in the range of 32-int. 
A test case starting with 0 terminates the input and this test case is not to be processed. 
 

Output

For each case, print the maximum according to rules, and one line one case. 
 

Sample Input

    
3 1 3 2 4 1 2 3 4 4 3 3 2 1 0
 

Sample Output

    
4 10 3
 

Source





dp求最长上升子序列,简单题。

分析:在序列中对于任意元素都有其最长递增序列,那么对于后续元素其最优解与其他元素最优解的联系是什么呢?
 不难知道整体最优解与局部最优解的关系为:dp[i] = max{ dp[j] + a[i] } (0<=j<=i)其中dp[i]表示第i个元素的最长递增子序列和。
详细解析:如序列:1 4 7 3 5 6,那么开一个数组来保存同下标的“最大值”,每一个都要向前找合法的最大s值,如这里的5可以找的合法值为3 4 1,找到最大后便加上同下标的a值,如:
数组a:1  4   7   3    5    6
数组s:1  5  12   4  10   16
这样从数组S就可以找到最大值了。

代码:

#include <iostream>
#include<cstdio>
using namespace std;
const int maxn=1010;
int a[maxn],dp[maxn];
int main()
{
    int i,j,n;
    while(scanf("%d",&n)&&n!=0)
    {
        int maxm=0;
            for(i=0;i<n;i++)
            scanf("%d",&a[i]);
            for(i=0;i<n;i++)
            {
                dp[i]=a[i];
                for(j=0;j<i;j++)
                if(a[j]<a[i]&&dp[i]<dp[j]+a[i])
                dp[i]=dp[j]+a[i];
               maxm=max(maxm,dp[i]);
            }
            printf("%d\n",maxm);
    }
    return 0;
}

同步定位与地图构建(SLAM)技术为移动机器人或自主载具在未知空间中的导航提供了核心支撑。借助该技术,机器人能够在探索过程中实时构建环境地图并确定自身位置。典型的SLAM流程涵盖传感器数据采集、数据处理、状态估计及地图生成等环节,其核心挑战在于有效处理定位与环境建模中的各类不确定性。 Matlab作为工程计算与数据可视化领域广泛应用的数学软件,具备丰富的内置函数与专用工具箱,尤其适用于算法开发与仿真验证。在SLAM研究方面,Matlab可用于模拟传感器输出、实现定位建图算法,并进行系统性能评估。其仿真环境能显著降低实验成本,加速算法开发与验证周期。 本次“SLAM-基于Matlab的同步定位与建图仿真实践项目”通过Matlab平台完整再现了SLAM的关键流程,包括数据采集、滤波估计、特征提取、数据关联与地图更新等核心模块。该项目不仅呈现了SLAM技术的实际应用场景,更为机器人导航与自主移动领域的研究人员提供了系统的实践参考。 项目涉及的核心技术要点主要包括:传感器模型(如激光雷达与视觉传感器)的建立与应用、特征匹配与数据关联方法、滤波器设计(如扩展卡尔曼滤波与粒子滤波)、图优化框架(如GTSAM与Ceres Solver)以及路径规划与避障策略。通过项目实践,参与者可深入掌握SLAM算法的实现原理,并提升相关算法的设计与调试能力。 该项目同时注重理论向工程实践的转化,为机器人技术领域的学习者提供了宝贵的实操经验。Matlab仿真环境将复杂的技术问题可视化与可操作化,显著降低了学习门槛,提升了学习效率与质量。 实践过程中,学习者将直面SLAM技术在实际应用中遇到的典型问题,包括传感器误差补偿、动态环境下的建图定位挑战以及计算资源优化等。这些问题的解决对推动SLAM技术的产业化应用具有重要价值。 SLAM技术在工业自动化、服务机器人、自动驾驶及无人机等领域的应用前景广阔。掌握该项技术不仅有助于提升个人专业能力,也为相关行业的技术发展提供了重要支撑。随着技术进步与应用场景的持续拓展,SLAM技术的重要性将日益凸显。 本实践项目作为综合性学习资源,为机器人技术领域的专业人员提供了深入研习SLAM技术的实践平台。通过Matlab这一高效工具,参与者能够直观理解SLAM的实现过程,掌握关键算法,并将理论知识系统应用于实际工程问题的解决之中。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值