与C99相比,java还有比较丰富的并发包支持。这样可以按业务选择并发容器,不用自己再手撸一个或者是在用容器时考虑加解锁。
和a++这样的非原子性操作类似,容器元素的put/get操作也是非原子的,多线程中非原子操作就要考虑数据正确性了,当然容器的扩容也有可能导致出现问题,
比如下面这段代码
public class HashMapNotSafe {
public static void main(String[] args) {
final Map<Integer, String> map = new HashMap<>();
final Integer targetKey = 0b1111_1111_1111_1111; // 65 535
final String targetValue = "v";
map.put(targetKey, targetValue);
new Thread(() -> {
IntStream.range(0, targetKey).forEach(key -> map.put(key, "someValue"));
}).start();
while (true) {
if (null == map.get(targetKey)) {
throw new RuntimeException("HashMap is not thread safe.");
}
}
}
}
另外一个线程在扩容时会导致main线程中tagetkey取到null。当然HashMap还有可见性的问题。
并发包中的concurrentHashMap解决了这些问题。
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) {
throw new NullPointerException();
}
//计算 hash 值
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K, V>[] tab = table; ; ) {
Node<K, V> f;
int n, i, fh;
//如果数组是空的,就进行初始化
if (tab == null || (n = tab.length) == 0) {
tab = initTable();
}
// 找该 hash 值对应的数组下标
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
//如果该位置是空的,就用 CAS 的方式放入新值
if (casTabAt(tab, i, null,
new Node<K, V>(hash, key, value, null))) {
break;
}
}
//hash值等于 MOVED 代表在扩容
else if ((fh = f.hash) == MOVED) {
tab = helpTransfer(tab, f);
}
//槽点上是有值的情况
else {
V oldVal = null;
//用 synchronized 锁住当前槽点,保证并发安全
synchronized (f) {
if (tabAt(tab, i) == f) {
//如果是链表的形式
if (fh >= 0) {
binCount = 1;
//遍历链表
for (Node<K, V> e = f; ; ++binCount) {
K ek;
//如果发现该 key 已存在,就判断是否需要进行覆盖,然后返回
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent) {
e.val = value;
}
break;
}
Node<K, V> pred = e;
//到了链表的尾部也没有发现该 key,说明之前不存在,就把新值添加到链表的最后
if ((e = e.next) == null) {
pred.next = new Node<K, V>(hash, key,
value, null);
break;
}
}
}
//如果是红黑树的形式
else if (f instanceof TreeBin) {
Node<K, V> p;
binCount = 2;
//调用 putTreeVal 方法往红黑树里增加数据
if ((p = ((TreeBin<K, V>) f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent) {
p.val = value;
}
}
}
}
}
if (binCount != 0) {
//检查是否满足条件并把链表转换为红黑树的形式,默认的 TREEIFY_THRESHOLD 阈值是 8
if (binCount >= TREEIFY_THRESHOLD) {
treeifyBin(tab, i);
}
//putVal 的返回是添加前的旧值,所以返回 oldVal
if (oldVal != null) {
return oldVal;
}
break;
}
}
}
addCount(1L, binCount);
return null;
}
get 方法的代码
public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
//计算 hash 值
int h = spread(key.hashCode());
//如果整个数组是空的,或者当前槽点的数据是空的,说明 key 对应的 value 不存在,直接返回 null
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
//判断头结点是否就是我们需要的节点,如果是则直接返回
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
//如果头结点 hash 值小于 0,说明是红黑树或者正在扩容,就用对应的 find 方法来查找
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
//遍历链表来查找
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
总体看来就是顶层是node数组,hash值碰撞用拉链法,链表长度大于8(默认值)是升级为red-block tree。并发度理论上与table中的元素个数一样。为什么是链表长度大于8才转红黑树,因为如果hash 方法离散的好,链表长度理想情况下是符合泊松分布,各个长度的命中率一次递减,
0: 0.60653066
1: 0.30326533
2: 0.07581633
3: 0.01263606
4: 0.00157952
5: 0.00015795
6: 0.00001316
7: 0.00000094
8: 0.00000006
链表长度到8概率几乎为零。
但是架不住程序员故意将对象的hash值改成离散不均匀的,这样就会触发链表转红黑树了。
并发包中的copyOnWriteList,add元素先加锁,然后复制一个新的list出来往新数组里add,再解锁。
public boolean add(E e) {
// 加锁
final ReentrantLock lock = this.lock;
lock.lock();
try {
// 得到原数组的长度和元素
Object[] elements = getArray();
int len = elements.length;
// 复制出一个新数组
Object[] newElements = Arrays.copyOf(elements, len + 1);
// 添加时,将新元素添加到新数组中
newElements[len] = e;
// 将volatile Object[] array 的指向替换成新数组
setArray(newElements);
return true;
} finally {
lock.unlock();
}
}
它的迭代器是
private COWIterator(Object[] elements, int initialCursor) {
cursor = initialCursor;
snapshot = elements;
}
public E next() {
if (! hasNext())
throw new NoSuchElementException();
return (E) snapshot[cursor++];
}
可以看到迭代器持有容器数组的快照,所以新加元素并不会影响到旧的迭代器。很明显这样还是比较耗内存。
1985

被折叠的 条评论
为什么被折叠?



