Roadblocks——次短路

本文深入探讨了求解次短路径问题的两种算法——Dijkstra和SPFA。通过实例讲解了如何利用这两种算法找到从起点到终点的第二短路径,适用于解决特定类型的路径寻优问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门POJ3255

描述

Bessie has moved to a small farm and sometimes enjoys returning to visit one of her best friends. She does not want to get to her old home too quickly, because she likes the scenery along the way. She has decided to take the second-shortest rather than the shortest path. She knows there must be some second-shortest path.

The countryside consists of R (1 ≤ R ≤ 100,000) bidirectional roads, each linking two of the N (1 ≤ N ≤ 5000) intersections, conveniently numbered 1..N. Bessie starts at intersection 1, and her friend (the destination) is at intersection N.

The second-shortest path may share roads with any of the shortest paths, and it may backtrack i.e., use the same road or intersection more than once. The second-shortest path is the shortest path whose length is longer than the shortest path(s) (i.e., if two or more shortest paths exist, the second-shortest path is the one whose length is longer than those but no longer than any other path).

输入

Line 1: Two space-separated integers: N and R
Lines 2..R+1: Each line contains three space-separated integers: A, B, and D that describe a road that connects intersections A and B and has length D (1 ≤ D ≤ 5000)

输出

Line 1: The length of the second shortest path between node 1 and node N

样例

  • Input
    4 4
    1 2 100
    2 4 200
    2 3 250
    3 4 100
  • Output
    450

题解

  • 题意:输入n,m;1—n的点,m条边,找出次短路
  • 用dis[i][0]表示1到i的最短距离,dis[i][1]表示1到i的次短距离

Code

  • Dijkstra:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    #include<bits/stdc++.h>
    using namespace std;
    #define LL long long
    #define INIT(a,b) memset(a,b,sizeof(a))
    const int N=5e3+7;
    const int R=1e5+7;
    const int inf=0x3fffffff;
    struct Edge{
    int to,val,next;
    }edge[R<<1];
    struct Node{
    int v,w;
    bool operator < (const Node &e)const{return w>e.w;}
    };
    int Begin[N],tot=0,vis[N];LL dis[N][2];
    int n,m;
    void add(int x,int y,int w){
    edge[tot]=(Edge){y,w,Begin[x]};
    Begin[x]=tot++;
    }
    void Dijkstra(int t){
    priority_queue<Node> que;
    for(int i=1;i<=n;i++) dis[i][0]=dis[i][1]=inf;
    dis[t][0]=0;
    que.push((Node){t,dis[t][0]});
    while(!que.empty()){
    Node now=que.top();que.pop();
    int x=now.v;
    if(dis[x][1]<now.w)continue; //剪枝
    for(int i=Begin[x];~i;i=edge[i].next){
    int ne=edge[i].to;
    int d=now.w+edge[i].val; //now.w不一定是到i的最短路
    if(d<dis[ne][0]){
    dis[ne][1]=dis[ne][0];
    dis[ne][0]=d;
    que.push((Node){ne,dis[ne][0]});
    }
    else if(d>dis[ne][0]&&d<dis[ne][1]){
    dis[ne][1]=d;
    que.push((Node){ne,dis[ne][1]});
    }
    }
    }
    }
    int main(){
    ios::sync_with_stdio(false);
    cin.tie(0);
    INIT(Begin,-1);INIT(vis,0);
    tot=0;
    int x,y,w;
    cin>>n>>m;
    for(int i=0;i<m;i++){
    cin>>x>>y>>w;
    add(x,y,w);
    add(y,x,w);
    }
    Dijkstra(1);
    cout<<dis[n][1]<<endl;
    return 0;
    }
  • SPFA:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    #include<bits/stdc++.h>
    using namespace std;
    #define LL long long
    #define INIT(a,b) memset(a,b,sizeof(a))
    const int N=5e3+7;
    const int R=1e5+7;
    const int inf=0x3fffffff;
    struct Edge{
    int to,val,next;
    }edge[R<<1];
    struct Node{
    int v,w;
    };
    int Begin[N],tot=0;LL dis[N][2];
    int n,m;
    void add(int x,int y,int w){
    edge[tot]=(Edge){y,w,Begin[x]};
    Begin[x]=tot++;
    }
    void spfa(int t){
    for(int i=1;i<=n;i++) dis[i][0]=dis[i][1]=inf;
    queue<Node> road;
    road.push((Node){t,0});
    dis[t][0]=0;;
    while(!road.empty()){
    Node top=road.front();road.pop();
    int now=top.v;
    for(int i=Begin[now];~i;i=edge[i].next){
    int ne=edge[i].to;
    LL d=top.w+edge[i].val;
    if(dis[ne][0]>d){
    dis[ne][1]=dis[ne][0];
    dis[ne][0]=d;
    road.push((Node){ne,dis[ne][0]});
    }
    else if(dis[ne][0]<d && d<dis[ne][1]){
    dis[ne][1]=d;
    road.push((Node){ne,dis[ne][1]});
    }
    }
    }
    }

    int main(){
    ios::sync_with_stdio(false);
    cin.tie(0);
    INIT(Begin,-1);
    int x,y,w;
    cin>>n>>m;
    for(int i=0;i<m;i++){
    cin>>x>>y>>w;
    add(x,y,w);
    add(y,x,w);
    }
    spfa(1);
    cout<<dis[n][1]<<endl;
    return 0;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值