10277 Boastin' Red Socks(概率 暴力枚举)

本文介绍了一个有趣的概率问题——Boastin' Red Socks,通过给定两个整数p和q,求解抽屉中红袜子和黑袜子的数量。文章详细解释了问题背景、解决思路及实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem E - Boastin' Red Socks

You have a drawer that is full of two kinds of socks: red and black. You know that there are at least 2 socks, and not more than 50000. However, you do not know how many there actually are, nor do you know how many are red, or how many are black. (Your mother does the laundry!)

You have noticed, though, that when you reach into the drawer each morning and choose two socks to wear (in pitch darkness, so you cannot distinguish red from black), the probability that you pick two red socks is exactly p/q, where 0 < q and 0 <= p <= q.

From this, can you determine how many socks of each colour are in your drawer? There may be multiple solutions - if so, pick the solution with the fewest total number of socks, but still allowing you to wear a couple of same color socks.

Input

Input consists of multiple problems, each on a separate line. Each problem consists of the integers p and qseparated by a single space. Note that p and q will both fit into an unsigned long integer.

Input is terminated by a line consisting of two zeroes.

Output

For each problem, output a single line consisting of the number of red socks and the number of black socks in your drawer, separated by one space. If there is no solution to the problem, print "impossible".

Sample Input

1 2
6 8
12 2499550020
56 789
0 0

Sample Output

3 1
7 1
4 49992
impossible
题意:给定p和q,然后你有n双红袜子,m双黑袜子,取两次(不放回),都是红袜子的概率为p/q。输出n,m

思路:列出式子 n / (n + m) * (n - 1) / ( n + m - 1) = p / q = n * (n - 1) / (n + m) * (n + m - 1); 然后已知袜子总数为50000.这样只要枚举50000以内,i * (i - 1)的数字作为分母。然后分子为i * (i - 1) / q * p 。分子也要是j * ( j - 1)的形式,在去枚举一次j如果符合就输出即可。

代码:

#include <stdio.h>
#include <string.h>
const long long N = 50000;
long long p, q, n, m, i, j;

void solve() {
	for (i = 2; i <= N; i ++) {
		m = i * (i - 1);
		if (m % q) continue;
		n = m / q * p;
		for (j = 2; j * (j - 1) <= n; j ++) {
			if (j * (j - 1) == n) {
				printf("%lld %lld\n", j, i - j);
				return;
			}
		}
	}
	if (i == N + 1)
		printf("impossible\n");
}

int main() {
	while (~scanf("%lld%lld", &p, &q) && p || q) {
		if (p == q) printf("2 0\n");
		else if (p == 0) printf("0 2\n");
		else solve();
	}
	return 0;
}



内容概要:本文深入探讨了金属氢化物(MH)储氢系统在燃料电池汽车中的应用,通过建立吸收/释放氢气的动态模型和热交换模型,结合实验测试分析了不同反应条件下的性能表现。研究表明,低温环境有利于氢气吸收,高温则促进氢气释放;提高氢气流速和降低储氢材料体积分数能提升系统效率。论文还详细介绍了换热系统结构、动态性能数学模型、吸放氢特性仿真分析、热交换系统优化设计、系统控制策略优化以及工程验证与误差分析。此外,通过三维动态建模、换热结构对比分析、系统级性能优化等手段,进一步验证了金属氢化物储氢系统的关键性能特征,并提出了具体的优化设计方案。 适用人群:从事氢能技术研发的科研人员、工程师及相关领域的研究生。 使用场景及目标:①为储氢罐热管理设计提供理论依据;②推动车载储氢技术的发展;③为金属氢化物储氢系统的工程应用提供量化依据;④优化储氢系统的操作参数和结构设计。 其他说明:该研究不仅通过建模仿真全面验证了论文实验结论,还提出了具体的操作参数优化建议,如吸氢阶段维持25-30°C,氢气流速0.012g/s;放氢阶段快速升温至70-75°C,水速18-20g/min。同时,文章还强调了安全考虑,如最高工作压力限制在5bar以下,温度传感器冗余设计等。未来的研究方向包括多尺度建模、新型换热结构和智能控制等方面。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值