UVA 10759 Dice Throwing(dp 概率)

本文介绍了一种使用动态规划算法解决骰子投掷问题的方法,旨在计算特定条件下骰子组合出现的概率,并通过代码实例展示了如何求解最简概率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem A
Dice Throwing
Input:
 standard input
Output: standard output
Time Limit: 1 second

 

n common cubic dice are thrown. What is the probability that the sum of all thrown dice is at least x?
  
Input

The input file contains several test cases. Each test case consists two integers n (1<=n<=24) and x(0<=x<150). The meanings of n and x are given in the problem statement. Input is terminated by a case where n=0 and x=0. This case should not be processed.

 

Output

For each line of input produce one line of output giving the requested probability as a proper fraction in lowest terms in the format shown in the sample output. All numbers appearing in output are representable in unsigned 64-bit integers. The last line of input contains two zeros and it should not be processed.

Sample Input                             Output for Sample Input

3 9
1 7
24 24
15 76
24 56
24 143
23 81
7 38
0 0
 
20/27
0
1
11703055/78364164096
789532654692658645/789730223053602816
25/4738381338321616896
1/2

55/46656



题意:给定n个骰子和一个x,要求出用这些骰子投出大于等于x的概率。要求最简。

思路:先用dp打表出用n个骰子掷出x的种数,然后就是用gcd约分。

代码:

#include <stdio.h>
#include <string.h>
const int N = 30;
const int X = 155;
long long n, x;
long long dp[N][X], zi, mu;

long long gcd(long long a, long long b) {
	if (!b) return a;
	return gcd(b, a % b); 
}
int main() {
	for (int i = 1; i <= 24; i ++)
		for (int j = 1; j <= 150; j ++) {
			if (i == 1 && j <= 6)
				dp[i][j] = 1;
			for (int k = 1; k <= 6; k ++) {
				if (j >= k)
					dp[i][j] += dp[i - 1][j - k];
			}
		}
	while (~scanf("%lld%lld", &n, &x) && n || x) {
		mu = zi = 0;
		for (int i = n; i <= n * 6; i ++) {
			mu += dp[n][i];
			if (i >= x)
				zi += dp[n][i];
		}
		long long num = gcd(mu, zi);
		if (zi == mu)
			printf("1\n");
		else if (zi == 0)
			printf("0\n");
		else
			printf("%lld/%lld\n", zi / num, mu / num);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值