1010. Radix (25)

本文深入探讨了如何通过二分法算法解决数值转换问题,特别关注从二进制数到十进制数的转换。通过实例分析,读者将学会如何确定给定数值的最小可能基数,以实现数值等式的成立。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a pair of positive integers, for example, 6 and 110, can this equation 6 = 110 be true? The answer is “yes”, if 6 is a decimal number and 110 is a binary number.

Now for any pair of positive integers N1 and N2, your task is to find the radix of one number while that of the other is given.

Input Specification:

Each input file contains one test case. Each case occupies a line which contains 4 positive integers:
N1 N2 tag radix
Here N1 and N2 each has no more than 10 digits. A digit is less than its radix and is chosen from the set {0-9, a-z} where 0-9 represent the decimal numbers 0-9, and a-z represent the decimal numbers 10-35. The last number “radix” is the radix of N1 if “tag” is 1, or of N2 if “tag” is 2.

Output Specification:

For each test case, print in one line the radix of the other number so that the equation N1 = N2 is true. If the equation is impossible, print “Impossible”. If the solution is not unique, output the smallest possible radix.
Sample Input 1:

6 110 1 10

Sample Output 1:

2

Sample Input 2:

1 ab 1 2

Sample Output 2:

Impossible


二分法寻找radix.
二分法中的low与high必须计算得出,low大于N2中出现的最大数。high小于等于N1的值。


代码1

#include<iostream>
#include<math.h>
#include<string>
using namespace std;
#define maxr 160
string n1,n2,f;
int r;
int getn(char s){
    if(s<='9'&&s>='0')
        return s-'0';
    else return s-'a'+10;
}
long long numr(string s,int r){
    long long ans=0;
    for(int i=0;i<s.size();i++){
        ans=ans*r+getn(s[i]);
    }
    return ans;
}
void find(long long t,long long low,long long high){
    long long  l=low,r=high;
    while(r!=l){
        long long mid=(l+r)/2;
        long long ans=numr(n2,mid);
        if(ans>=t||ans<0){
            r=mid;
        }
        else l=mid+1;
    }
    if(numr(n2,r)!=t){ 
        cout<<"Impossible"<<endl;
    }
    else{
        cout<<r<<endl;
    }
}
int findLargestDigit(string n2){
    int ans=-1,len=n2.size();
    for(int i=0;i<len;i++){
        if(getn(n2[i])>ans){
            ans=getn(n2[i]);
        }
    }
    return ans+1;
}
int main(){
    cin>>n1>>n2>>f>>r;
    if(f=="2"){
        string temp=n1;
        n1=n2;
        n2=temp;
    }
    long long low=findLargestDigit(n2);
    long long t=numr(n1,r);
    long long high=max(low,t)+1;
    find(t,low,high);
    return 0;
}

代码2(晴神)

#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long LL;
LL Map[256];
LL inf=(1LL<<63)-1;//long long 最大值为2^63-1
void init(){
    for(char c='0';c<='9';c++){
        Map[c]=c-'0';
    }
    for(char c='a';c<='z';c++){
        Map[c]=c-'a'+10;
    }
}
LL converNum10(char a[],LL radix,LL t){
    LL ans=0;
    int len=strlen(a);
    for(int i=0;i<len;i++){
        ans=ans*radix+Map[a[i]];
        if(ans<0||ans>t) return -1;//溢出或者超过N1的十进制
    }
    return ans;
}
int cmp(char N2[],LL radix,LL t){
    int len=strlen(N2);
    LL num=converNum10(N2,radix,t);
    if(num<0) return 1;
    if(t>num) return -1;
    else if(t==num) return 0;
    else return 1;
}
LL binarySearch(char N2[],LL left,LL right,LL t){
    LL mid;
    while(left<=right){
        mid=(left+right)/2;
        int flag=cmp(N2,mid,t);
        if(flag==0) return mid;
        else if(flag==-1) left=mid+1;
        else right=mid-1;
    }
    return -1;
}
int findLargestDigit(char N2[]){
    int ans=-1,len=strlen(N2);
    for(int i=0;i<len;i++){
        if(Map[N2[i]]>ans){
            ans=Map[N2[i]];
        }
    }
    return ans+1;
}
char N1[20],N2[20],temp[20];
int tag,radix;
int main(){
    init();
    scanf("%s %s %d %d",N1,N2,&tag,&radix);
    if(tag==2){
        strcpy(temp,N1);
        strcpy(N1,N2);
        strcpy(N2,temp);
    }
    LL t=converNum10(N1,radix,inf);
    LL low=findLargestDigit(N2);//N2中位数最大的位+1,当成2分下界
    LL high=max(low,t)+1;
    LL ans=binarySearch(N2,low,high,t);
    if(ans==-1) printf("Impossible\n");
    else printf("%lld\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值