1045. Favorite Color Stripe (30)

本文介绍了一种使用动态规划方法解决优化颜色条形图的问题,特别是如何根据个人喜好保留最喜爱的颜色组合,同时保持条形图的最大长度。通过分析输入的数据,程序能够找出所有可能的最佳解决方案,并提供最大的喜爱颜色组合长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Eva is trying to make her own color stripe out of a given one. She would like to keep only her favorite colors in her favorite order by cutting off those unwanted pieces and sewing the remaining parts together to form her favorite color stripe.

It is said that a normal human eye can distinguish about less than 200 different colors, so Eva’s favorite colors are limited. However the original stripe could be very long, and Eva would like to have the remaining favorite stripe with the maximum length. So she needs your help to find her the best result.

Note that the solution might not be unique, but you only have to tell her the maximum length. For example, given a stripe of colors {2 2 4 1 5 5 6 3 1 1 5 6}. If Eva’s favorite colors are given in her favorite order as {2 3 1 5 6}, then she has 4 possible best solutions {2 2 1 1 1 5 6}, {2 2 1 5 5 5 6}, {2 2 1 5 5 6 6}, and {2 2 3 1 1 5 6}.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=200) which is the total number of colors involved (and hence the colors are numbered from 1 to N). Then the next line starts with a positive integer M (<=200) followed by M Eva’s favorite color numbers given in her favorite order. Finally the third line starts with a positive integer L (<=10000) which is the length of the given stripe, followed by L colors on the stripe. All the numbers in a line are separated by a space.

Output Specification:

For each test case, simply print in a line the maximum length of Eva’s favorite stripe.
Sample Input:

6
5 2 3 1 5 6
12 2 2 4 1 5 5 6 3 1 1 5 6

Sample Output:

7


本题有两种实现方式。
1、LIS(最长不将子序列)动态规划。
2、LCS(最长公共子序列)动态规划


1、LIS(最长不将子序列)动态规划。

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
#define  maxc 210
#define maxn 10010
int Hash[maxc],a[maxn],dp[maxn];
int main(){
    int n,m,x;
    scanf("%d%d",&n,&m);
    memset(Hash,-1,sizeof(Hash));
    for(int i=0;i<m;i++){
        scanf("%d",&x);
        Hash[x]=i;
    }
    int l,num=0;
    scanf("%d",&l);
    for(int i=0;i<l;i++){
        scanf("%d",&x);
        if(Hash[x]!=-1){
            a[num++]=Hash[x];//是喜欢的颜色,加入到A中
        }
    }
    int ans=-1;
    for(int i=0;i<num;i++){
        dp[i]=1;
        for(int j=0;j<i;j++){
            if(a[j]<=a[i]&&dp[i]<dp[j]+1){
                dp[i]=dp[j]+1;
            }
        }
        ans=max(ans,dp[i]);
    }
    printf("%d\n",ans);
    return 0;
}

2、LCS(最长公共子序列)动态规划

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define maxn 210
#define maxl 10010
int fc[maxn],c[maxl],dp[maxl][maxn];
int main(){
    int n,m,l;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++){
        scanf("%d",&fc[i]);
    }
    scanf("%d",&l);
    for(int i=1;i<=l;i++){
        scanf("%d",&c[i]);
    }
    //边界
    for(int i=0;i<=l;i++){
        dp[i][0]=0;
    }   
    for(int i=0;i<=m;i++){
        dp[0][i]=0;
    }
    for(int i=1;i<=l;i++){
        for(int j=1;j<=m;j++){
            if(c[i]==fc[j]){
                dp[i][j]=max(dp[i-1][j],dp[i-1][j-1])+1;
            }
            else{ dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
            }
        }
    }
    printf("%d\n",dp[l][m]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值