Python网上购书图书销售商城系统网站的设计与实现

已开发项目效果实现截图

同行可拿货,招校园代理

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

关于我

全网粉丝40W+、优快云作者、博客专家、全栈领域优质创作者、平台优质Python,JAVA创作者、专注于Python,Java、小程序技术领域和毕业项目实战💯
技术范围:uniapp框架,Android,Kotlin框架,koa框架,express框架,go语言,laravel框架,thinkphp框架,springcloud,django,flask框架,SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发。同行可拿货,招校园代理

系统介绍

大数据指的就是尽可能的把信息收集统计起来进行分析,来分析你的行为和你周边的人的行为。大数据的核心价值在于存储和分析海量数据,大数据技术的战略意义不在于掌握大量数据信息,而在于专业处理这些有意义的数据。看似大数据是一个很高大上的感觉,和我们普通人的生活相差甚远,但是其实不然!大数据目前已经存在我们生活中的各种角落里了, 数据获取方法
数据集来源外卖推荐的相关数据,通过python中的xpath获取html中的数据。 数据预处理设计 对于爬取数据量不大的内容可以使用CSV库来存储数据,将其存为CSV文件格式,再对数据进行数据预处理,也可通过代码进行数据预处理。
(1)数据获取板块
数据获取板块功能主要是依据分析目的及要达到的目标,确定获取的数据种类,并使用直接获取数据文件方式或爬虫方式获取原始数据。
(2)数据预处理板块
数据预处理板块功能是对获取到的数据进行预处理操作:将重复的字段筛选,将过短并且没有实际意义的数据进行过滤,选择重要字段,标准化处理,异常值处理等预处理操作。
(3)数据存储板块
数据存储板块主要功能是把经过预处理的数据持久化存储,以便于后续分析。
(4)数据分析板块
数据分析板块主要功能是根据分析目标,找出数据中字段之间的内在关系,与规律。
(5)数据可视化板块
数据可视化板块主要功能是使用适当的图标展现方式,把数据的内在关系、规律展现出来。

开发技术路线

开发语言:Python
框架:flask/django
开发软件:PyCharm/vscode
数据库:mysql
数据库工具:Navicat for mysql
前端开发框架:vue.js
数据库 mysql 版本不限
本系统后端语言框架支持: 1 java(SSM/springboot)-idea/eclipse 2.Nodejs+Vue.js -vscode 3.python(flask/django)--pycharm/vscode 4.php(thinkphp/laravel)-hbuilderx

核心代码参考示例

预测算法代码如下(示例):

def booksinfoforecast_forecast():
    import datetime
    if request.method in ["POST", "GET"]:#get、post请求
        msg = {'code': normal_code, 'message': 'success'}
        #获取数据集
        req_dict = session.get("req_dict")
        connection = pymysql.connect(**mysql_config)
        query = "SELECT author,type,status,wordcount, monthcount FROM booksinfo"
        #处理缺失值
        data = pd.read_sql(query, connection).dropna()
        id = req_dict.pop('id',None)
        req_dict.pop('addtime',None)
        df = to_forecast(data,req_dict,None)
        #创建数据库连接,将DataFrame 插入数据库
        connection_string = f"mysql+pymysql://{mysql_config['user']}:{mysql_config['password']}@{mysql_config['host']}:{mysql_config['port']}/{mysql_config['database']}"
        engine = create_engine(connection_string)
        try:
            if req_dict :
                #遍历 DataFrame,并逐行更新数据库
                with engine.connect() as connection:
                    for index, row in df.iterrows():
                        sql = """
                        INSERT INTO booksinfoforecast (id
                        ,monthcount
                        )
                        VALUES (%(id)s
                    ,%(monthcount)s
                        )
                        ON DUPLICATE KEY UPDATE
                        monthcount = VALUES(monthcount)
                        """
                        connection.execute(sql, {'id': id
                            , 'monthcount': row['monthcount']
                        })
            else:
                df.to_sql('booksinfoforecast', con=engine, if_exists='append', index=False)
            print("数据更新成功!")
        except Exception as e:
            print(f"发生错误: {e}")
        finally:
            engine.dispose()  # 关闭数据库连接
        return jsonify(msg)
 

本项目开发思路

(1) 采用B/S模式进行开发,其优点是前台与大数据处理层次分明,而且符合众多已经习惯网页方式的用户。
(2)采用面向对象的开发与设计理念。运用面向对象爬虫和大数据的前提是对整体系统的高度和准确抽象,通过它可以保证系统良好的框架,进而带来产品较强的稳定性和运行效率。
(3) 采用模块化设计。模块化设计要求将整个系统划分成基于小的模块,有利于大数据代码的重载,简化设计和实现过程。
(4) 简单方便的系统界面。设计简单友好的系统界面,方便用户较快的适应系统的操作。
(5)速度优先原则。由于此工具最重要的评测标准就是速度,因此在设计过程中,具体过程尽量做到资源占用少,速度快。
( 6)在数据库的选择方面选择高效的MySQL数据库,这样可以长期稳定地存储和使用数据。而且最大的好处就在于当服务器端更换设备的时候,完全可以不用担心大数据代码因为MySQL数据库可以完美的并入拓展到其他的数据库。

结论

该系统严格按照需求分析制作相关模块,并利用所学知识尽力完成,但是本人由于学识浅薄,无法真正做到让该程序可以投入市场使用,仅仅简单实现部分功能,希望日后还能改善。
性能测试:对系统进行全面的性能测试,包括负载测试、压力测试和稳定性测试等,确保系统在高并发和大数据量情况下仍能保持稳定运行。
优化与调整:根据性能测试结果,对系统进行优化和调整,提高系统的性能和稳定性。
用户测试:设计用户测试计划,邀请测试人员参与测试,收集他们对系统的反馈意见。
迭代优化:根据用户反馈意见,对系统进行迭代优化设计,确保系统更加贴合的实际需求。

本系统还支持springboot/laravel/express/nodejs/thinkphp/flask/django/ssm/springcloud 微服务分布式等框架,同行可拿货,招校园代理

源码lw获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!

需要成品或者定制,文章最下方名片联系我即可~ 所有项目都经过测试完善,本系统包修改时间和标题,包安装部署运行调试,不满意的可以定制

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

磐石网络

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值