Cuckoo Hashing

本文深入探讨了Cuckoo Hashing算法的基本原理、实现细节以及应用实例,通过具体的输入输出样例展示了如何解决冲突问题并进行有效的字典查找。同时,提供了一段C++代码实现,帮助读者理解并实践这一高效的数据结构解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Cuckoo Hashing

Time Limit:1000MS  Memory Limit:65536K
Total Submit:3 Accepted:3

Description

One of the most fundamental data structure problems is the dictionary problem: given a set D of words you want to be able to quickly determine if any given query string q is present in the dictionary D or not. Hashing is a well-known solution for the problem. The idea is to create a function h : Σ* → [0..n-1] from all strings to the integer range 0, 1, .., n-1, i.e. you describe a fast deterministic program which takes a string as input and outputs an integer between 0 and n-1. Next you allocate an empty hash table T of size n and for each word w in D, you set T[h(w)] = w. Thus, given a query string q, you only need to calculate h(q) and see if T[h(q)] equals q, to determine if q is in the dictionary. Seems simple enough, but aren't we forgetting something? Of course, what if two words in D map to the same location in the table? This phenomenon, called collision, happens fairly often (remember the Birthday paradox: in a class of 24 pupils there is more than 50% chance that two of them share birthday). On average you will only be able to put roughly √n-sized dictionaries into the table without getting collisions, quite poor space usage!

A stronger variant is Cuckoo Hashing. The idea is to use two hash functions h1 and h2. Thus each string maps to two positions in the table. A query string q is now handled as follows: you compute both h1(q) and h2(q), and if T[h1(q)] = q, or T[h2(q)] = q, you conclude that q is in D. The name "Cuckoo Hashing" stems from the process of creating the table. Initially you have an empty table. You iterate over the words d in D, and insert them one by one. If T[h1(d)] is free, you set T[h1(d)] = d. Otherwise if T[h2(d)] is free, you set T[h2(d)] = d. If both are occupied however, just like the cuckoo with other birds' eggs, you evict the word r in T[h1(d)] and set T[h1(d)] = d. Next you put r back into the table in its alternative place (and if that entry was already occupied you evict that word and move it to its alternative place, and so on). Of course, we may end up in an infinite loop here, in which case we need to rebuild the table with other choices of hash functions. The good news is that this will not happen with great probability even if D contains up to n/2 words!

Input

On the first line of input is a single positive integer 1 ≤ t ≤ 50 specifying the number of test cases to follow. Each test case begins with two positive integers 1 ≤ m ≤ n ≤ 10000 on a line of itself, m telling the number of words in the dictionary and n the size of the hash table in the test case. Next follow m lines of which the ith describes the ith word di in the dictionary D by two non negative integers h1(di) and h2(di) less than n giving the two hash function values of the word di. The two values may be identical.

Output

For each test case there should be exactly one line of output either containing the string "successful hashing" if it is possible to insert all words in the given order into the table, or the string "rehash necessary" if it is impossible.

Sample Input

2
3 3
0 1
1 2
2 0
5 6
2 3
3 1
1 2
5 1
2 5

 

Sample Output

successful hashing
rehash necessary

 

Source

= =!

A complex description just to explain a 二分匹配问题

m 个 points 装入 n 个 boxes,each point has two position to chooce, ask whether can make each point a position to stay.

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值