《经典图论算法》迪杰斯特拉算法(Dijkstra)

摘要:

1,迪杰斯特拉算法介绍

2,迪杰斯特拉算法的代码实现

3,迪杰斯特拉算法的堆优化

4,为什么迪杰斯特拉算法不能处理带有负权边的图

1,迪杰斯特拉算法介绍

迪杰斯特拉算法(Dijkstra)也叫狄克斯特拉算法,它使用类似广度优先搜索的方法,解决从一个顶点到其他所有顶点的最短路径问题,它解决的是加权图(不能有负权)的最短路径问题。

从起始点开始,采用贪心算法的策略,每次选择一个没被标记且距离起始点最近的顶点,把它标记下,然后更新和它邻接的顶点 ……,直到所有顶点都计算完为止。

c8313103d8fc71fde650126c1ee13f25.png

如上图所示,假如计算从上海到其他所有城市的最短时间,上面的时间有可能是开车,有可能是高铁也可能是坐飞机,和真实距离不成正比。

我们从起始点开始,使用一个数组 dis ,数组中 dis[j] 的值表示从起始点到顶点 j 的时间,刚开始的时候,起始点到他自己为 0 ,到其他顶点都为无穷大,如下图所示。

1d0403354d2024312814e2bdd452c043.png

如果想要减少从起始点到 j 的时间,唯一的方式就是需要寻找一个中转站 k 。从起始点到 k 的时间为 dis[k] ,从 k 到 j 的时间为 g[k][j] ,然后判断中转的总时间 dis[k] + g[k][j] 是否小于 dis[j] ,如果中转时间小于 dis[j] ,就更新 dis[j] 。

比如最上面图中,从起始点到南京的时间是 3 小时,如果通过杭州中转,时间就会变成 2 小时。核心代码是下面这行。

dis[j] = min(dis[j], dis[k] + g[k][j]);

迪杰斯特拉算法的解题思路如下:

1,从起始点开始计算所有和它相连的点(也就是起始点指向的点),计算完之后把起始点标记下(表示已经计算过了)。

2,找出离起始点最近且没有被标记过的点 v ,计算所有和 v 相连且没有被标记过的点,计算完之后把 v 标记下。

3,重复上面的步骤 2 ,直到所有顶点都标记完为止。

4b98fcf4a8af6109b3af655fd2ac3b9c.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据结构和算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值