Day5--Logistic Regression理论推导

本文深入探讨逻辑回归原理,包括其作为分类方法的应用,特别是在两分类问题中的表现。文章解析了如何构建预测函数与代价函数,以及如何运用梯度下降法进行优化。同时,对比了逻辑回归与其他算法如决策树的优劣。

逻辑回归

今天没有概念图和代码,只有一段话如下:

今天我深入研究了逻辑回归到底是什么,以及它背后的数学是什么。学习了如何计算代价函数,以及如何使用梯度下降法来将代价函数降低到最小。
由于时间关系,我将隔天发布信息图。如果有人在机器学习领域有一定经验,并愿意帮我编写代码文档,也了解github的Markdown语法,

下面是我自己整理的逻辑回归理论推导

逻辑回归就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏。

Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别)

构造预测函数h(x)

1) Logistic函数(或称为Sigmoid函数),函数形式为: 
这里写图片描述 
这里写图片描述

下面左图是一个线性的决策边界,右图是非线性的决策边界。

对于线性边界的情况,边界形式如下: 
这里写图片描述

其中,训练数据为向量 
这里写图片描述 
最佳参数 
这里写图片描述

构造预测函数为: 
这里写图片描述

 

函数的值有特殊的含义,它表示结果取1的概率,因此对于输入x分类结果为类别1和类别0的概率分别为:

构造损失函数

Cost函数和J函数如下,它们是基于最大似然估计推导得到的。 
这里写图片描述

下面详细说明推导的过程:

(1)式综合起来可以写成:

取似然函数为:

对数似然函数为:

根据“最大似然估计”,求l(θ)取最大值时的θθ,定义损失函数J(θ)为

因为乘了一个负的系数-1/m,所以取最小值时的θ为要求的最佳参数。

所以最后目标变成取J(θ)最小值时的θ为最佳参数。 
与线性回归类似,利用梯度下降法更新θ 

 

逻辑回归的优缺点

优点: 
1)速度快,适合二分类问题 
2)简单易于理解,直接看到各个特征的权重 
3)能容易地更新模型吸收新的数据 
缺点: 
对数据和场景的适应能力有局限性,不如决策树算法适应性那么强

下载前可以先看下教程 https://pan.quark.cn/s/a4b39357ea24 SSM框架,涵盖了Spring MVC、Spring以及MyBatis这三个框架,在Java领域内作为构建Web应用程序的常用架构而备受青睐,特别是在电子商务购物平台的设计与实现过程中展现出极高的应用价值。 这三个框架各自承担着特定的功能角色,通过协同运作来达成高效且灵活的业务处理目标。 Spring MVC作为Spring体系结构中的一个关键部分,主要致力于处理HTTP请求与响应,并推行模型-视图-控制器(MVC)的设计模式。 其运作机制中,DispatcherServlet扮演着前端控制器的角色,负责接收HTTP请求,并将其依据请求映射至相应的Controller处理方法。 在Controller执行完业务逻辑后,会将处理结果传递给ModelAndView对象,随后由ViewResolver将其解析为具体视图进行呈现。 Spring MVC还具备数据绑定、验证以及国际化等附加功能,这些特性显著提升了开发工作的效率以及代码的可维护程度。 Spring框架则是一个综合性的企业级应用开发框架,其核心能力包含依赖注入(DI)、面向切面编程(AOP)以及事务管理等关键特性。 DI机制使得开发者能够借助配置文件或注解手段来管理对象的生成与依赖关联,从而有效降低组件之间的耦合性。 AOP技术则适用于实现诸如日志记录、权限管理这类跨领域的功能需求,有助于使代码结构更为清晰。 Spring在事务管理方面提供了编程式和声明式两种处理途径,确保了数据操作过程遵循原子性与一致性原则。 MyBatis则是一个轻量级的数据库访问层框架,其特点在于将SQL语句与Java代码进行分离,并支持动态SQL的编写。 开发者可以在XM...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值