tensorflow随机张量创建

本文介绍了TensorFlow中创建随机张量的方法,包括tf.random_normal、tf.truncated_normal、tf.random_uniform、tf.random_shuffle、tf.random_crop、tf.multinomial、tf.random_gamma等函数的使用,详细解释了各个函数的参数和返回值,帮助理解在TensorFlow中如何生成各种分布的随机张量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TensorFlow 有几个操作用来创建不同分布的随机张量。注意随机操作是有状态的,并在每次评估时创建新的随机值。

下面是一些相关的函数的介绍:

  • tf.random_normal

从正态分布中输出随机值。 

random_normal(
    shape,
    mean=0.0,
    stddev=1.0,
    dtype=tf.float32,
    seed=None,
    name=None
)

args:

shape:一维整数或 Python 数组表示输出张量的形状。

mean:dtype 类型的0-D张量或 Python 值表示正态分布的均值。

stddev:dtype 类型的0-D张量或 Python 值表示正态分布的标准差。

dtype:输出的类型。

seed:一个 Python 整数。用于为分发创建一个随机种子。

name:操作的名称(可选)。

返回:将返回一个指定形状的张量,通过符合要求的随机值填充。

  • tf.truncated_normal

生成的值遵循具有指定平均值和标准差的正态分布,和tf.random_normal不同之处在于其平均值大于 2 个标准差的值将被丢弃并重新选择。

tf.truncated_normal(
    shape,
    mean=0.0,
    stddev=1.0,
    dtype=tf.float32,
    seed=None,
    name=None
)

args:

shape:一维整数或 Python 数组表示输出张量的形状。

mean:dtype 类型的 0-D 张量或 Python 值表示截断正态分布的均值。

stddev:dtype 类型的 0-D 张量或 Python 值表示截断前正态分布的标准偏差。

dtype:输出的类型。

seed:一个 Python 整数。用于为分发创建随机种子。

name:操作的名称(可选)。

返回:

函数返回指定形状的张量,通过随机截断的符合要求的值填充。

  • tf.random_uniform

从均匀分布中输出随机值。

random_uniform(
    shape,
    minval=0,
    maxval=None,
    dtype=tf.fl
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值