poj 1458:Common Subsequence 最长公共子序列长度

本文介绍了一种解决最长公共子序列问题的算法实现,通过动态规划方法找到两个字符串之间的最长公共子序列长度,并提供了C++及Java两种语言的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总时间限制:
1000ms
内存限制:
65536kB

描述
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, …, xm > another sequence Z = < z1, z2, …, zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, …, ik > of indices of X such that for all j = 1,2,…,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
输入
The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.
输出
For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
样例输入

abcfbc         abfcab
programming    contest 
abcd           mnp

样例输出

4
2
0

直接上代码

#include <iostream>
#include<string>
#include <algorithm>
using namespace std;
int main()
{
    string str1,str2;
    while(cin>>str1>>str2)
    {
        int dp[str1.length()][str2.length()];
        for (int i = 0; i < str1.length(); ++i) {
            for (int j = 0; j < str2.length(); ++j) {
                dp[i][j]=0;
            }
        }

        int exam = 0;
        for (int i = 0; i < str1.length(); ++i) {
            if(str2[0]==str1[i]) exam=1;
            dp[i][0]=exam;
        }

        exam = 0;
        for (int i = 0; i < str2.length(); ++i) {
            if(str1[0]==str2[i]) exam = 1;
            dp[0][i]=exam;
        }
        for (int i = 1; i < str1.length(); ++i) {
            for (int j = 1; j < str2.length(); ++j) {
                if(str1[i]==str2[j]){
                    dp[i][j]=dp[i-1][j-1]+1;
                }
                else{
                    dp[i][j]=max(dp[i][j-1], dp[i-1][j]);
                }
            }
        }
        exam = 0;
        for (int i = 0; i < str1.length(); ++i) {
            for (int j = 0; j < str2.length(); ++j) {
                exam=max(exam, dp[i][j]);
            }
        }
        cout<<exam<<endl;
    }
    return 0;
}

这里写图片描述

java

import java.util.*;

public class Main {

    public static void main(String args[]) {
        Scanner s = new Scanner(System.in);
        String str1, str2;

        while (s.hasNext()) {
            str1 = s.next();
            str2 = s.next();
            char[] str1_c = str1.toCharArray();
            char[] str2_c = str2.toCharArray();
            ArrayList<ArrayList> dp = new ArrayList<ArrayList>();

            for (int i = 0; i < str1_c.length; i++) {
                ArrayList n_e = new ArrayList();
                for (int j = 0; j < str2_c.length; j++) {
                    n_e.add(0);
                }
                dp.add(n_e);
            }
            int exam = 0;
            for (int i = 0; i < str1_c.length; i++) {
                if (str2.charAt(0) == str1.charAt(i)) exam = 1;
                dp.get(i).set(0, exam);
            }

            exam = 0;
            for (int i = 0; i < str2_c.length; i++) {
                if (str1.charAt(0) == str2.charAt(i)) exam = 1;
                dp.get(0).set(i, exam);
            }

            for (int i = 1; i < str1_c.length; i++) {
                for (int j = 1; j < str2_c.length; j++) {
                    if (str1.charAt(i) == str2.charAt(j)) {
                        //相等
                        dp.get(i).set(j, (int) dp.get(i - 1).get(j - 1) + 1);
                    } else {
                        //不相等
                        int maxs = Math.max((int) dp.get(i).get(j - 1), (int) dp.get(i - 1).get(j));
                        dp.get(i).set(j, maxs);
                    }
                }
            }
            exam = 0;
            for (int i = 0; i < str1_c.length; i++) {
                for (int j = 0; j < str2_c.length; j++) {
                    if (exam < (int) dp.get(i).get(j)) {
                        exam = (int) dp.get(i).get(j);
                    }
                }
            }
            System.out.println(exam);
        }
    }
}
/*

7
1 7 3 5 9 4 8
*/

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值