使用socket()函数创建套接字

文章详细介绍了在Windows操作系统中如何使用socket函数创建TCP套接字,包括bind函数将套接字与特定IP地址和端口绑定,connect函数建立连接,以及listen和accept函数用于服务器端的监听和接收客户端请求。同时,文章解释了sockaddr_in结构体及其成员变量的作用,以及相关函数如inet_addr和htons的使用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在Windows下创建socket

Windows 下也使用 socket() 函数来创建套接字,原型为:

SOCKET socket(int af, int type, int protocol);

除了返回值类型不同,其他都是相同的。Windows 不把套接字作为普通文件对待,而是返回 SOCKET 类型的句柄。请看下面的例子:

SOCKET sock = socket(AF_INET, SOCK_STREAM, 0);  //创建TCP套接字socket() 函数用来创建套接字,确定套接字的各种属性,然后服务器端要用 bind() 函数将套接字与特定的IP地址和端口绑定起来,只有这样,流经该IP地址和端口的数据才能交给套接字处理;而客户端要用 connect() 函数建立连接。

bind() 函数

bind() 函数的原型为:

int bind(int sock, struct sockaddr *addr, socklen_t addrlen);  //Linux
int bind(SOCKET sock, const struct sockaddr *addr, int addrlen);  //Windows
下面以Linux为例进行讲解,Windows与此类似。

sock 为 socket 文件描述符,addr 为 sockaddr 结构体变量的指针,addrlen 为 addr 变量的大小,可由 sizeof() 计算得出。

下面的代码,将创建的套接字与IP地址 127.0.0.1、端口 1234 绑定:



  1. //创建套接字
  2. int serv_sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
  3. //创建sockaddr_in结构体变量
  4. struct sockaddr_in serv_addr;
  5. memset(&serv_addr, 0, sizeof(serv_addr)); //每个字节都用0填充
  6. serv_addr.sin_family = AF_INET; //使用IPv4地址
  7. serv_addr.sin_addr.s_addr = inet_addr("127.0.0.1"); //具体的IP地址
  8. serv_addr.sin_port = htons(1234); //端口
  9. //将套接字和IP、端口绑定
  10. bind(serv_sock, (struct sockaddr*)&serv_addr, sizeof(serv_addr));

这里我们使用 sockaddr_in 结构体,然后再强制转换为 sockaddr 类型,后边会讲解为什么这样做。

sockaddr_in 结构体

接下来不妨先看一下 sockaddr_in 结构体,它的成员变量如下:



  1. struct sockaddr_in{
  2. sa_family_t sin_family; //地址族(Address Family),也就是地址类型
  3. uint16_t sin_port; //16位的端口号
  4. struct in_addr sin_addr; //32位IP地址
  5. char sin_zero[8]; //不使用,一般用0填充
  6. };

1) sin_family 和 socket() 的第一个参数的含义相同,取值也要保持一致。

2) sin_prot 为端口号。uint16_t 的长度为两个字节,理论上端口号的取值范围为 0~65536,但 0~1023 的端口一般由系统分配给特定的服务程序,例如 Web 服务的端口号为 80,FTP 服务的端口号为 21,所以我们的程序要尽量在 1024~65536 之间分配端口号。

端口号需要用 htons() 函数转换,后面会讲解为什么。

3) sin_addr 是 struct in_addr 结构体类型的变量,下面会详细讲解。

4) sin_zero[8] 是多余的8个字节,没有用,一般使用 memset() 函数填充为 0。上面的代码中,先用 memset() 将结构体的全部字节填充为 0,再给前3个成员赋值,剩下的 sin_zero 自然就是 0 了。

in_addr 结构体

sockaddr_in 的第3个成员是 in_addr 类型的结构体,该结构体只包含一个成员,如下所示:



  1. struct in_addr{
  2. in_addr_t s_addr; //32位的IP地址
  3. };

in_addr_t 在头文件 <netinet/in.h> 中定义,等价于 unsigned long,长度为4个字节。也就是说,s_addr 是一个整数,而IP地址是一个字符串,所以需要 inet_addr() 函数进行转换,例如:



  1. unsigned long ip = inet_addr("127.0.0.1");
  2. printf("%ld\n", ip);

运行结果:
16777343


图解 sockaddr_in 结构体


为什么要搞这么复杂,结构体中嵌套结构体,而不用 sockaddr_in 的一个成员变量来指明IP地址呢?socket() 函数的第一个参数已经指明了地址类型,为什么在 sockaddr_in 结构体中还要再说明一次呢,这不是啰嗦吗?

这些繁琐的细节确实给初学者带来了一定的障碍,我想,这或许是历史原因吧,后面的接口总要兼容前面的代码。各位读者一定要有耐心,暂时不理解没有关系,根据教程中的代码“照猫画虎”即可,时间久了自然会接受。

为什么使用 sockaddr_in 而不使用 sockaddr

bind() 第二个参数的类型为 sockaddr,而代码中却使用 sockaddr_in,然后再强制转换为 sockaddr,这是为什么呢?

sockaddr 结构体的定义如下:



  1. struct sockaddr{
  2. sa_family_t sin_family; //地址族(Address Family),也就是地址类型
  3. char sa_data[14]; //IP地址和端口号
  4. };

下图是 sockaddr 与 sockaddr_in 的对比(括号中的数字表示所占用的字节数):


sockaddr 和 sockaddr_in 的长度相同,都是16字节,只是将IP地址和端口号合并到一起,用一个成员 sa_data 表示。要想给 sa_data 赋值,必须同时指明IP地址和端口号,例如”127.0.0.1:80“,遗憾的是,没有相关函数将这个字符串转换成需要的形式,也就很难给 sockaddr 类型的变量赋值,所以使用 sockaddr_in 来代替。这两个结构体的长度相同,强制转换类型时不会丢失字节,也没有多余的字节。

可以认为,sockaddr 是一种通用的结构体,可以用来保存多种类型的IP地址和端口号,而 sockaddr_in 是专门用来保存 IPv4 地址的结构体。另外还有 sockaddr_in6,用来保存 IPv6 地址,它的定义如下:



  1. struct sockaddr_in6 {
  2. sa_family_t sin6_family; //(2)地址类型,取值为AF_INET6
  3. in_port_t sin6_port; //(2)16位端口号
  4. uint32_t sin6_flowinfo; //(4)IPv6流信息
  5. struct in6_addr sin6_addr; //(4)具体的IPv6地址
  6. uint32_t sin6_scope_id; //(4)接口范围ID
  7. };

正是由于通用结构体 sockaddr 使用不便,才针对不同的地址类型定义了不同的结构体。

connect() 函数

connect() 函数用来建立连接,它的原型为:

int connect(int sock, struct sockaddr *serv_addr, socklen_t addrlen);  //Linux
int connect(SOCKET sock, const struct sockaddr *serv_addr, int addrlen);  //Windows

各个参数的说明和 bind() 相同,不再赘述。
对于服务器端程序,使用 bind() 绑定套接字后,还需要使用 listen() 函数让套接字进入被动监听状态,再调用 accept() 函数,就可以随时响应客户端的请求了。

listen() 函数

通过 listen() 函数可以让套接字进入被动监听状态,它的原型为:



  1. int listen(int sock, int backlog); //Linux
  2. int listen(SOCKET sock, int backlog); //Windows

sock 为需要进入监听状态的套接字,backlog 为请求队列的最大长度。

所谓被动监听,是指当没有客户端请求时,套接字处于“睡眠”状态,只有当接收到客户端请求时,套接字才会被“唤醒”来响应请求。

请求队列

当套接字正在处理客户端请求时,如果有新的请求进来,套接字是没法处理的,只能把它放进缓冲区,待当前请求处理完毕后,再从缓冲区中读取出来处理。如果不断有新的请求进来,它们就按照先后顺序在缓冲区中排队,直到缓冲区满。这个缓冲区,就称为请求队列(Request Queue)

缓冲区的长度(能存放多少个客户端请求)可以通过 listen() 函数的 backlog 参数指定,但究竟为多少并没有什么标准,可以根据你的需求来定,并发量小的话可以是10或者20。

如果将 backlog 的值设置为 SOMAXCONN,就由系统来决定请求队列长度,这个值一般比较大,可能是几百,或者更多。

当请求队列满时,就不再接收新的请求,对于 Linux,客户端会收到 ECONNREFUSED 错误,对于 Windows,客户端会收到 WSAECONNREFUSED 错误。

注意:listen() 只是让套接字处于监听状态,并没有接收请求。接收请求需要使用 accept() 函数。

accept() 函数

当套接字处于监听状态时,可以通过 accept() 函数来接收客户端请求。它的原型为:



  1. int accept(int sock, struct sockaddr *addr, socklen_t *addrlen); //Linux
  2. SOCKET accept(SOCKET sock, struct sockaddr *addr, int *addrlen); //Windows

它的参数与 listen() 和 connect() 是相同的:sock 为服务器端套接字,addr 为 sockaddr_in 结构体变量,addrlen 为参数 addr 的长度,可由 sizeof() 求得。

accept() 返回一个新的套接字来和客户端通信,addr 保存了客户端的IP地址和端口号,而 sock 是服务器端的套接字,大家注意区分。后面和客户端通信时,要使用这个新生成的套接字,而不是原来服务器端的套接字。

最后需要说明的是:listen() 只是让套接字进入监听状态,并没有真正接收客户端请求,listen() 后面的代码会继续执行,直到遇到 accept()。accept() 会阻塞程序执行(后面代码不能被执行),直到有新的请求到来。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿峰的编程博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值