爬取拉钩网

import re
import requests
all_cookie_dict = {}

# ##################################### 第一步:访问登录页面 #####################################
r1 = requests.get(
    url='https://passport.lagou.com/login/login.html',
    headers={
        'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36'
    }
)

token =  re.findall("X_Anti_Forge_Token = '(.*)';",r1.text)[0]
code =  re.findall("X_Anti_Forge_Code = '(.*)';",r1.text)[0]
r1_cookie_dict = r1.cookies.get_dict()
all_cookie_dict.update(r1_cookie_dict)

# ##################################### 第二步:去登陆 #####################################
r2 = requests.post(
    url='https://passport.lagou.com/login/login.json',
    data={
        'isValidate':'true',
        'username':'1439286684',
        'password':'4565465',
        'request_form_verifyCode':'',
        'submit':''
    },
    headers={
        'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36',
        'X-Requested-With':'XMLHttpRequest',
        'Content-Type':'application/x-www-form-urlencoded; charset=UTF-8',
        'Host':'passport.lagou.com',
        'Origin':'https://passport.lagou.com',
        'Referer':'https://passport.lagou.com/login/login.html',
        'X-Anit-Forge-Code':code,
        'X-Anit-Forge-Token':token
    },
    cookies=all_cookie_dict

)
r2_response_json = r2.json()
r2_cookie_dict = r2.cookies.get_dict()
all_cookie_dict.update(r2_cookie_dict)
# ##################################### 第三步:grant #####################################
r3 = requests.get(
    url='https://passport.lagou.com/grantServiceTicket/grant.html',
    headers={
        'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36',
        'Referer':'https://passport.lagou.com/login/login.html',
        'Host':'passport.lagou.com',
    },
    cookies=all_cookie_dict,
    allow_redirects=False

)
r3_cookie_dict = r3.cookies.get_dict()
all_cookie_dict.update(r3_cookie_dict)
# ##################################### 第四步:action #####################################
r4 = requests.get(
    url=r3.headers['Location'],
    headers={
        'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36',
        'Referer':'https://passport.lagou.com/login/login.html',
        'Host':'www.lagou.com',
        'Upgrade-Insecure-Requests':'1',
    },
    cookies=all_cookie_dict,
    allow_redirects=False

)
r4_cookie_dict = r4.cookies.get_dict()
all_cookie_dict.update(r4_cookie_dict)

# ##################################### 第五步:获取认证信息 #####################################
r5 = requests.get(
    url=r4.headers['Location'],
    headers={
        'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36',
        'Referer':'https://passport.lagou.com/login/login.html',
        'Host':'www.lagou.com',
        'Upgrade-Insecure-Requests':'1',
    },
    cookies=all_cookie_dict,
    allow_redirects=False

)
r5_cookie_dict = r5.cookies.get_dict()
all_cookie_dict.update(r5_cookie_dict)

print(r5.headers['Location'])

# ##################################### 第六步 #####################################
r6 = requests.get(
    url=r5.headers['Location'],
    headers={
        'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36',
        'Referer':'https://passport.lagou.com/login/login.html',
        'Host':'www.lagou.com',
        'Upgrade-Insecure-Requests':'1',
    },
    cookies=all_cookie_dict,
    allow_redirects=False

)
r6_cookie_dict = r6.cookies.get_dict()
all_cookie_dict.update(r6_cookie_dict)

print(r6.headers['Location'])


# ##################################### 第七步 #####################################
r7 = requests.get(
    url=r6.headers['Location'],
    headers={
        'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36',
        'Referer':'https://passport.lagou.com/login/login.html',
        'Host':'www.lagou.com',
        'Upgrade-Insecure-Requests':'1',
    },
    cookies=all_cookie_dict,
    allow_redirects=False

)
r7_cookie_dict = r7.cookies.get_dict()
all_cookie_dict.update(r7_cookie_dict)




# ##################################### 第八步:查看个人信息 #####################################
r8 = requests.get(
    url='https://gate.lagou.com/v1/neirong/account/users/0/',
    headers={
        'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36',
        'Host':'gate.lagou.com',
        'Pragma':'no-cache',
        'Referer':'https://account.lagou.com/v2/account/userinfo.html',
        'X-L-REQ-HEADER':'{deviceType:1}'
    },
    cookies=all_cookie_dict
)
r8_response_json = r8.json()
# print(r8_response_json)
all_cookie_dict.update(r8.cookies.get_dict())


# ##################################### 第九步:查看个人信息 #####################################

r9 = requests.put(
    url='https://gate.lagou.com/v1/neirong/account/users/0/',
    headers={
        'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36',
        'Host':'gate.lagou.com',
        'Origin':'https://account.lagou.com',
        'Referer':'https://account.lagou.com/v2/account/userinfo.html',
        'X-L-REQ-HEADER':'{deviceType:1}',
        'X-Anit-Forge-Code':r8_response_json.get('submitCode'),
        'X-Anit-Forge-Token':r8_response_json.get('submitToken'),
        'Content-Type':'application/json;charset=UTF-8',
    },
    json={"userName":"wupeiqi999","sex":"MALE","portrait":"images/myresume/default_headpic.png","positionName":"...","introduce":"...."},
    cookies=all_cookie_dict
)

print(r9.text)

 

基于遗传算法的微电调度(风、光、蓄电池、微型燃气轮机)(Matlab代码实现)内容概要:本文档介绍了基于遗传算法的微电调度模型,涵盖风能、太阳能、蓄电池和微型燃气轮机等多种能源形式,并通过Matlab代码实现系统优化调度。该模型旨在解决微电中多能源协调运行的问题,优化能源分配,降低运行成本,提高可再生能源利用率,同时考虑系统稳定性与经济性。文中详细阐述了遗传算法在求解微电多目标优化问题中的应用,包括编码方式、适应度函数设计、约束处理及算法流程,并提供了完整的仿真代码供复现与学习。此外,文档还列举了大量相关电力系统优化案例,如负荷预测、储能配置、潮流计算等,展示了广泛的应用背景和技术支撑。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事微电、智能电优化研究的工程技术人员。; 使用场景及目标:①学习遗传算法在微电调度中的具体实现方法;②掌握多能源系统建模与优化调度的技术路线;③为科研项目、毕业设计或实际工程提供可复用的代码框架与算法参考; 阅读建议:建议结合Matlab代码逐段理解算法实现细节,重点关注目标函数构建与约束条件处理,同时可参考文档中提供的其他优化案例进行拓展学习,以提升综合应用能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值