libsvm

关于 libsvm多类分类
2010年07月20日 星期二 下午 03:51
哪位高人能说一下,libsvm多类分类最多能做多少个分类?三四十个分 类可以做吗?一般多少个类别最优啊?
lkf0217
 
帖子: 7
注册: 2009年 4月 17日 18:07

Re: 关于libsvm多类分类

帖子lujigz » 2009年 9月 22日 16:22

个人认为目前svm多分类效果不佳,目前是svm研究的热点之一。libsvm用的是one- versus-one法。
简介:
.一对一法(one-versus-one,简称OVO SVMs或者pairwise)。其做法是在任意两类样本之间设计一个SVM,因此k个类别的样本就需要设计k(k-1)/2个SVM。当对一个未知样本 进行分类时,最后得票最多的类别即为该未知样本的类别。Libsvm中的多类分类就是根据这个方法实现的。

还是假设有四类A,B,C,D 四类。在训练的时候我选择A,B; A,C; A,D; B,C; B,D;C,D所对应的向量作为训练集,然后得到六个训练结果,在测试的时候,把对应的向量分别对六个结果进行测试,然后采取投票形式,最后得到一组结 果。

投票是这样的.
A=B=C=D=0;
(A, B)-classifier 如果是A win,则A=A+1;otherwise,B=B+1;
(A,C)-classifer 如果是A win,则A=A+1;otherwise, C=C+1;
...
(C,D)-classifer 如果是A win,则C=C+1;otherwise,D=D+1;
The decision is the Max(A,B,C,D)

 

http://hi.baidu.com/macula7/blog/item/5f10331020412772cb80c427.html

libsvm的多分类策略
2010-05-05 09:29
SVM是一个二分类器,当遇到多类别的时候,一般采取如下两种策略。 a.一对多法(one-versus-rest,简称1-v-r SVMs)。训练时依次把某个类别的样本归为一类,其他剩余的样本归为另一类,这样k个类别的样本就构造出了k个SVM。分类时将未知样本分类为具有最大分类函数值的那类。 b.一对一法(one-versus-one,简称1-v-1 SVMs)。其做法是在任意两类样本之间设计一个SVM,因此k个类别的样本就需要设计k(k-1)/2个SVM。当对一个未知样本进行分类时,最后得 票最多的类别即为该未知样本的类别。Libsvm中的多类分类就是根据这个方法实现的

 

 

 

http://zzshihailiang.blog.163.com/blog/static/479813612007925113336849/

SVM多分类的方法

2007-10-25 11:33:36|  分类: 默认分类 阅读261 评论0   字号: 订阅

SVM算法最初是为二值分类问题设计的,当处理多类问题时,就需要构造合适的多类分类器。目前,构造SVM多类分类器的方法主要有两类:一类是直接法,直接在目标函数上进行修改,将多个分类面的参数求解合并到一个最优化问题中,通过求解该最优化问题“一次性”实现多类分类。这种方法看似简单,但其计算复杂度比较高,实现起来比较困难,只适合用于小型问题中;另一类是间接法,主要是通过组合多个二分类器来实现多分类器的构造,常见的方法有one-against-one和one-against-all两种。

a.一对多法(one-versus-rest,简称1-v-r SVMs)。训练时依次把某个类别的样本归为一类,其他剩余的样本归为另一类,这样k个类别的样本就构造出了k个SVM。分类时将未知样本分类为具有最大分类函数值的那类。

b.一对一法(one-versus-one,简称1-v-1 SVMs)。其做法是在任意两类样本之间设计一个SVM,因此k个类别的样本就需要设计k(k-1)/2个SVM。当对一个未知样本进行分类时,最后得 票最多的类别即为该未知样本的类别。Libsvm中的多类分类就是根据这个方法实现的。

c.层次支持向量机(H-SVMs)。层次分类法首先将所有类别分成两个子类,再将子类进一步划分成两个次级子类,如此循环,直到得到一个单独的类别为止。

对c和d两种方法的详细说明可以参考论文《支持向量机在多类分类问题中的推广》(计算机工程与应用。2004)

d.其他多类分类方法。除了以上几种方法外,还有有向无环图SVM(Directed Acyclic Graph SVMs,简称DAG-SVMs)和对类别进行二进制编码的纠错编码SVMs。

 

 

 

 

http://blog.youkuaiyun.com/flydreamGG/archive/2009/08/21/4470121.aspx

其实,在之前上海交大模式分析与机器智能实验室对2.6版本的svm.cpp做了部分注解,(在哪里?google一下你就知道)。但是,这个注释只是针对代码而注释,整篇看下来,你会发现除了理解几个参数的含义,还是会对libsvm一头雾水。当然作为理解程序的辅助材料,还是有很大用处的。特别是,对几个结构体的说明,比较清楚。但是要清楚程序具体做了什么,还是要追踪程序中去。

       由于svm涉及的数学知识比较多,我们这篇只是讲一些基本的思路,所以就从最基本的C-SVC型svm,核函数采用常用的RBF函数。LibSVM就采用2.6版本的好了,因为后续的版本作者又加了很多内容,不易理解作者最初的思路。我是做模式识别,主要从分类的角度来解析函数的调用过程,我们从svmtrain.c看起,其调用的函数过程如下:     

  

    上图是整个C-SVC的计算过程,下面对一些重要的内容进行具体说明:

 

1. svm_group_class

      在2.6版中没有此函数的,其功能直接在svm_train实现,为了增强可读性,2.89版中设置了这个函数,其实所作的工作都是一样的。需要说明的是其重新排列后perm中只存储的是各个样本在原始位置的序号,而非数据。这样做的好处有两个:

       1)不必破坏原始数据(也就是读进来的x的数据);

       2)检索起来方便,只需要L维的数据检索,得到序号后,然后定位到原始数据中相应的位置就可以。

 

       perm是中各类的排列顺序是按照原始样本中各类出现的先后顺序排列的,不一定是按照你原始样本的label序号排列,假如原始样本的label是{-1,0,1},而最先出现的label为1的样本,那么perm中就把label为1的作为类0最先排列。而start中记录的是各类的起始序号,而这个序号是在perm中的序号。

 

2. 多类判别的one-against-one

      svm做判别是用的分界线(面),两类之间只有一个分界线(面),因此分类器也只有1种,要么是1类要么是2类。但是对于多类,分类方式就有多种。目前,存在的方法主要有:

       1)1-V-R方式

       对于k类问题,把其中某一类的n个训练样本视为一类,所有其他类别归为另一类,因此共有k个分类器。最后预测时,判别式使用竞争方式,也就是哪个类得票多就属于那个类。

       2)1-V-1方式

       也就是我们所说的one-against-one方式。这种方法把其中的任意两类构造一个分类器,共有(k-1)×k/2个分类器。最后预测也采用竞争方式。

       3)有向无环图(DAG-SVM)

       该方法在训练阶段采用1-V-1方式,而判别阶段采用一种两向有向无环图的方式。

       LibSVM采用的是1-V-1方式,因为这种方式思路简单,并且许多实践证实效果比1-V-R方式要好。 

 

       上图是一个5类1-V-1组合的示意图,红色是0类和其他类的组合,紫色是1类和剩余类的组合,绿色是2类与右端两类的组合,蓝色只有3和4的组合。因此,对于nr_class个类的组合方式为:

                                                        for(i = 0; i < nr_class; i ++)

                                                        {

                                                               for(j = i+1; i < nr_class; j ++)     

                                                               { 类 i –V – 类 j }

                                                        }

 

3. hessian矩阵的内存处理        

      因为svm是基于结构风险最小的,因此在分类识别方式具有较传统的基于经验风险最小的方式有优势。但是svm也有一个致命的缺陷,因为要计算hessian矩阵Qij所耗的内存巨大,不利于实践中应用。目前,怎么减小内存的使用依旧是SVM的研究的课题。LibSVM对hessian矩阵处理的策略是定义了一个内存处理类Cache类,预先认为分配一定的内存,存储计算好的Qij,其序号的检索采用双向链表的方式,加快了检索速度。其最重要的函数为:

       int Cache::get_data(const int index, Qfloat **data, int len)

       //len 是 data 的长度,data为返回的内存首地址,index为Qij的行。

       每次都要查找链表中行为index的Qi,假如已经计算过了,就返回计算过的内存地址,并把储存首地址的链表节点插入到链表尾部。假如没计算过,就分配内存并进行计算,当剩余的内存不够时,就要回收链表头指向的内存。这里,可能有人会问,难道以前计算的就没有用了吗??其实,是因为Qij是稀疏矩阵,在训练过程中只要其对应的alpha[i]不再变动(这时alpha[i]=0或者alpha[i]=C),其对应的Qi就不会被选到来训练,因此原来计算的Qi就没有用了。其实,链表的顺序代表了别选到的频率,最头部的是最不可能被选到,因为这时alpha[i]=0或者alpha[i]=C,而最尾部的最容易被选到。

 

4. 数据选择select_working_set(i,j)     

     对于样本数量比较多的时候(几千个),SVM所需要的内存是计算机所不能承受的。目前,对于这个问题的解决方法主要有两种:块算法和分解算法。这里,libSVM采用的是分解算法中的SMO(串行最小化)方法,其每次训练都只选择两个样本。我们不对SMO做具体的讨论,要想深入了解可以查阅相关的资料,这里只谈谈和程序有关的知识。

      一般SVM的对偶问题为:                      

                                                               

 S.t.                                                                                                         (4.1)

                                                                                             

     SVM收敛的充分必要条件是KKT条件,其表现为:

                                           (4.2)

     由4.1式求导可得:

                                           (4.3)

     进一步推导可知:

                                                  (4.4)

    也就是说,只要所有的样本都满足4.4式,那么得到解就是最优值。因此,在每轮训练中,每次只要选择两个样本(序号为i和j),是最违反KKT条件(也就是4.4式)的样本,就能保证其他样本也满足KKT条件。序号i和j的选择方式如下:

                          (4.5)

 

5. 停止准则

    LibSVM程序中,停止准则蕴含在了函数select_working_set(i,j)返回值中。也就是,当找不到符合4.5式的样本时,那么理论上就达到了最优解。但是,实际编程时,由于KKT条件还是蛮苛刻的,要进行适当的放松。令:

                                                          (4.6)

     由4.4式可知,当所有样本都满足KKT条件时,gi ≤ -gj

       加一个适当的宽松范围ε,也就是程序中的eps,默认为0.001,那么最终的停止准则为:

gi ≤ -gj +ε  →    gi + gj ≤ε                                    (4.7)

 

6. 因子α的更新

 

    由于SMO每次都只选择2个样本,那么4.1式的等式约束可以转化为直线约束:

                                             (4.8)

   转化为图形表示为:

                            

      把4.8式中α1由α2 表示,即:,结合上图由解析几何可得α2的取值范围:

                                    (4.9)

     经过一系列变换,可以得到的α2更新值α2new:

                                                  (4.10)

    结合4.9和4.10式得到α2new最终表达式:

                                                                     (4.11)

      得到α2new后,就可以由4.8式求α1new。

      这里,具体操作的时候,把选择后的序号i和j代替这里的1和2就可以了。当然,编程时,这些公式还是太抽象。对于4.9式,还需要具体细分。比如,对于y1 y2 = -1时的L = max(0,α2 - α1),是0大还α2 - α1是大的问题。总共需要分8种情况。

 

7. 数据缩放do_shrinking()


     上面说到SVM用到的内存巨大,另一个缺陷就是计算速度,因为数据大了,计算量也就大,很显然计算速度就会下降。因此,一个好的方式就是在计算过程中逐步去掉不参与计算的数据。因为,实践证明,在训练过程中,alpha[i]一旦达到边界(alpha[i]=0或者alpha[i]=C),alpha[i]值就不会变,随着训练的进行,参与运算的样本会越来越少,SVM最终结果的支持向量(0<alpha[i]<C)往往占很少部分。

       LibSVM采用的策略是在计算过程中,检测active_size中的alpha[i]值,如果alpha[i]到了边界,那么就应该把相应的样本去掉(变成inactived),并放到栈的尾部,从而逐步缩小active_size的大小。

 

8. 截距b的计算

    b计算的基本公式为:

                                                                          (4.12)

     理论上,b的值是不定的。当程序达到最优后,只要用任意一个标准支持向量机(0<alpha[i]<C)的样本带入4.12式,得到的b值都是可以的。目前,求b的方法也有很多种。在libSVM中,分别对y=+1和y=-1的两类所有支持向量求b,然后取平均值:

                                                                      (4.13)

 

    至此,libSVM的整个思路我们简单的过了一遍,里面涉及到很到理论知识,许多细节需要查看相关的SVM的书籍。说实话,笔者也是新手,有些理论也没弄很清楚,我只能把我知道的尽量的讲出来。希望对一些想要了解SVM的有所帮助。


本文来自优快云博客,转载请标明出处:http://blog.youkuaiyun.com/flydreamGG/archive/2009/08/21/4470121.aspx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值