机器学习算法 -- SVM 详解

本文详细介绍了支持向量机(SVM)的概念,从线性可分支持向量机的间隔最大化,到线性支持向量机(软间隔)与松弛变量的应用,再到非线性支持向量机如何利用核函数解决非线性问题。SVM的优势在于不对数据分布做假设,使其适用于多种场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、简介

支持向量机(support vector machines)是一种二分类模型,它的目的是寻找一个超平面来对样本进行分割,分割的原则是间隔最大化,最终转化为一个凸二次规划问题来求解。由简至繁的模型包括:

  • 当训练样本线性可分时,通过硬间隔最大化,学习一个线性可分支持向量机
  • 当训练样本近似线性可分时,通过软间隔最大化,学习一个线性支持向量机
  • 当训练样本线性不可分时,通过核技巧软间隔最大化,学习一个非线性支持向量机

二、线性可分支持向量机

1、间隔最大化和支持向量

如果一个线性函数能够将样本分开,称这些数据样本是线性可分的。那么什么是线性函数呢?在二维空间中就是一条直线,在三维空间中就是一个平面,以此类推,如果不考虑空间维数,这样的线性函数统称为超平面。上图中二维空间的样本就是线性可分的,但是很显然不只有这一条直线可以将样本分开,而是有无数条,我们所说的线性可分支持向量机就对应着能将数据正确划分并且间隔最大的直线&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值