题目大意
按照从底至顶的顺序给出平面上的n个圆
一个测试点多组数据。
1≤n≤100,|xi|,|yi|∈[−10,10]
题目分析
考虑扫描线,所有关键的横坐标是圆的左右两端以及任意两圆交点横坐标。这样每个区间内的圆都是完全跨越的,于是一个圆可见当且仅当其在某一个区间可见。
怎么判断一个圆在某个x坐标区间的可见性呢?显然我们取区间中任意一个
时间复杂度O(n3(logn+α(n)))。
代码实现
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
typedef long double db;
const db EPS=1e-8;
const int N=105;
const int M=N<<1;
const int L=N*N+N<<1;
bool equ(db x,db y){return fabs(x-y)<EPS;}
int sgn(db x){return equ(x,0.0)?0:(x<0?-1:1);}
db sqr(db x){return x*x;}
struct P
{
db x,y;
P (db x_=0.,db y_=0.){x=x_,y=y_;}
P operator+(P const p)const{return P(x+p.x,y+p.y);}
P operator-(P const p)const{return P(x-p.x,y-p.y);}
P operator*(db k)const{return P(x*k,y*k);}
db operator*(P const p)const{return x*p.x+y*p.y;}
db operator^(P const p)const{return x*p.y-y*p.x;}
};
db mod2(P p){return p*p;}
db mod(P p){return sqrt(mod2(p));}
db dist(P p,P q){return mod(q-p);}
P rotate(P p,db a){return P(p.x*cos(a)-p.y*sin(a),p.x*sin(a)+p.y*cos(a));}
P adjust(P p,db len){return p*(len/mod(p));}
struct C
{
P O;
db r;
C (){}
C (P O_,db r_=0.){O=O_,r=r_;}
}cir[N];
void ict(C c,db x,P &p,P &q)
{
if (x==c.O.x) p=P(x,c.O.y+c.r),q=P(x,c.O.y-c.r);
else p=adjust(P(x-c.O.x,0),c.r),x=acos(fabs(x-c.O.x)/c.r),q=c.O+rotate(p,x),p=c.O+rotate(p,-x);
}
bool is_intersectant(C c1,C c2)
{
db d=dist(c1.O,c2.O);
return sgn(c1.r+c2.r-d)>=0&&sgn(c1.r+d-c2.r)>0&&sgn(c2.r+d-c1.r)>0;
}
void ict(C c1,C c2,P &p,P &q)
{
db d=dist(c1.O,c2.O),a=acos((sqr(c1.r)+sqr(d)-sqr(c2.r))/(2.*c1.r*d));
p=adjust(c2.O-c1.O,c1.r),q=c1.O+rotate(p,a),p=c1.O+rotate(p,-a);
}
struct data
{
bool side;
db key;
int id;
data (db key_=0.,int id_=0,bool side_=0){key=key_,id=id_,side=side_;}
bool operator<(data const x)const{return key<x.key;}
}srt[M];
struct range
{
int l,r,h;
bool operator<(range const x)const{return h<x.h;}
}rg[N];
int fa[M],rgt[M],rank[M];
bool insight[N];
db tmp[N][2];
db line[L];
int n,ans,cnt,tot,rgs,num;
void pre()
{
cnt=0;
for (int i=1;i<=n;++i)
{
line[++cnt]=cir[i].O.x-cir[i].r,line[++cnt]=cir[i].O.x+cir[i].r;
for (int j=i+1;j<=n;++j)
if (is_intersectant(cir[i],cir[j]))
{
P p,q;
ict(cir[i],cir[j],p,q);
line[++cnt]=p.x,line[++cnt]=q.x;
}
}
sort(line+1,line+1+cnt);
}
int getfather(int son){return fa[son]==son?son:fa[son]=getfather(fa[son]);}
void merge(int x,int y,int r)
{
if (rank[x]>rank[y]) swap(x,y);
fa[x]=y,rank[y]+=rank[x]==rank[y],rgt[y]=r;
}
void calc()
{
for (int i=1;i<=n;++i) insight[i]=0;
for (int i=2;i<=cnt;++i)
{
tot=0;
db lx=(line[i]+line[i-1])*.5;
for (int j=1;j<=n;++j)
if (sgn(cir[j].r-fabs(lx-cir[j].O.x))>=0)
{
P p,q;
ict(cir[j],lx,p,q);
if (p.y>q.y) swap(p,q);
rg[++tot].h=j,tmp[tot][0]=p.y,tmp[tot][1]=q.y;
}
rgs=0;
for (int j=1;j<=tot;++j) srt[++rgs]=data(tmp[j][0],j,0),srt[++rgs]=data(tmp[j][1],j,1);
sort(srt+1,srt+1+rgs);
num=0;
for (int j=1;j<=rgs;++j)
{
num+=(j==1||!equ(srt[j].key,srt[j-1].key));
if (srt[j].side) rg[srt[j].id].r=num;
else rg[srt[j].id].l=num;
}
sort(rg+1,rg+1+tot);
for (int j=1;j<=num;++j) fa[j]=rgt[j]=j,rank[j]=0;
for (int j=tot,k,l;j>=1;--j)
for (k=rgt[getfather(rg[j].l)],l=rgt[getfather(rg[j].r)],insight[rg[j].h]|=k!=l;l=rgt[getfather(rg[j].r)],k!=l;merge(getfather(k),getfather(k+1),rgt[getfather(k+1)]),k=rgt[getfather(k)]);
}
for (int i=1;i<=n;++i) ans+=insight[i];
}
int main()
{
freopen("confetti.in","r",stdin),freopen("confetti.out","w",stdout);
for (;scanf("%d",&n),n;)
{
for (int i=1;i<=n;++i)
{
double x,y,r;
scanf("%lf%lf%lf",&x,&y,&r),cir[i]=C(P(x*1000000.,y*1000000.),r*1000000.);
}
ans=0,pre(),calc(),printf("%d\n",ans);
}
fclose(stdin),fclose(stdout);
return 0;
}