java 策略模式

该博客探讨了在Java编程中如何通过策略模式解决代码重复问题。通过创建抽象类`Animal`和具体实现如`Cat`和`Dog`,以及一个`Center`类来调用动物的`eat`方法,展示了如何将不同行为封装到独立的类中,以减少代码冗余。测试案例显示了如何实例化并使用这个模式。

 

判断语句过多,逻辑相同,重复太多  可以使用策略模式

abstract class Animal{
    abstract String eat(String food);
}

class center{
    private Animal animal;
    center(Animal animal){
        this.animal=animal;
    }
    public String result(String food){
      return    animal.eat(food);
    }
}

class cat extends Animal{

    @Override
    String eat(String food) {
        return "cat eat "+food;
    }
}

class dog extends  Animal{

    @Override
    String eat(String food) {
        return "dog eat "+food;
    }
}

//测试
   @Test
    void contextLoads() {
        center center = new center(new cat());
        System.out.println( center.result("鱼"));

    }

 

 

 

 

 

 

 

 

 

内容概要:本文围绕六自由度机械臂的人工神经网络(ANN)设计展开,重点研究了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程,并通过Matlab代码实现相关算法。文章结合理论推导与仿真实践,利用人工神经网络对复杂的非线性关系进行建模与逼近,提升机械臂运动控制的精度与效率。同时涵盖了路径规划中的RRT算法与B样条优化方法,形成从运动学到动力学再到轨迹优化的完整技术链条。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能控制、机器人控制、运动学六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)建模等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握机械臂正/逆运动学的数学建模与ANN求解方法;②理解拉格朗日-欧拉法在动力学建模中的应用;③实现基于神经网络的动力学补偿与高精度轨迹跟踪控制;④结合RRT与B样条完成平滑路径规划与优化。; 阅读建议:建议读者结合Matlab代码动手实践,先从运动学建模入手,逐步深入动力学分析与神经网络训练,注重理论推导与仿真实验的结合,以充分理解机械臂控制系统的设计流程与优化策略。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xixililicm

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值