中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
1 10 1 2 3 4 5 6 7 8 9 10 Query 1 3 Add 3 6 Query 2 7 Sub 10 2 Add 6 3 Query 3 10 End
Case 1: 6 33 59树状数组:如果给定一个数组,要你求里面所有数的和,一般都会想到累加。但是当那个数组很大的时候,累加就显得太耗时了,时间复杂度为O(n),并且采用累加的方法还有一个局限,那就是,当修改掉数组中的元素后,仍然要你求数组中某段元素的和,就显得麻烦了。所以我们就要用到树状数组,他的时间复杂度为O(lgn),相比之下就快得多。下面就讲一下什么是树状数组:
一般讲到树状数组都会少不了下面这个图:
下面来分析一下上面那个图看能得出什么规律:
据图可知:c1=a1,c2=a1+a2,c3=a3,c4=a1+a2+a3+a4,c5=a5,c6=a5+a6,c7=a7,c8=a1+a2+a3+a4+a5+a6+a7+a8,c9=a9,c10=a9+a10,c11=a11........c16=a1+a2+a3+a4+a5+.......+a16。
分析上面的几组式子可知,当 i 为奇数时,ci=ai ;当 i 为偶数时,就要看 i 的因子中最多有二的多少次幂,例如,6 的因子中有 2 的一次幂,等于 2 ,所以 c6=a5+a6(由六向前数两个数的和),4 的因子中有 2 的两次幂,等于 4 ,所以 c4=a1+a2+a3+a4(由四向前数四个数的和)。
(一)有公式:cn=a(n-a^k+1)+.........+an(其中 k 为 n 的二进制表示中从右往左数的 0 的个数)。
那么,如何求 a^k 呢?求法如下:
int
lowbit(
int
x)
{
return
x&(-x);
}
lowbit()的返回值就是 2^k 次方的值。
求出来 2^k 之后,数组 c 的值就都出来了,接下来我们要求数组中所有元素的和。
(二)求数组的和的算法如下:
(1)首先,令sum=0,转向第二步;
(2)接下来判断,如果 n>0 的话,就令sum=sum+cn转向第三步,否则的话,终止算法,返回 sum 的值;
(3)n=n - lowbit(n)(将n的二进制表示的最后一个零删掉),回第二步。
代码实现:
int
Sum(
int
n)
{
int
sum=0;
while
(n>0)
{
sum+=c[n];
n=n-lowbit(n);
}
return
sum;
}
(三)当数组中的元素有变更时,树状数组就发挥它的优势了,算法如下(修改为给某个节点 i 加上 x ):
(1)当 i<=n 时,执行下一步;否则的话,算法结束;
(2)ci=ci+x ,i=i+lowbit(i)(在 i 的二进制表示的最后加零),返回第一步。
代码实现:
本题代码如下:
void
change(
int
i,
int
x)
{
while
(i<=n)
{
c[i]=c[i]+x;
i=i+lowbit(i);
}
}
#include <iostream> #include <cstring> #include <cstdio> using namespace std; int a[50001]; char ch[10]; int t, n,e; int low(int x) { return x & (-x); } void add(int x,int y) { while(x<=n) { a[x]+=y; x+=low(x); } return ; } int sum(int x) { int sum=0; while(x>0) { sum+=a[x]; x-=low(x); } return sum; } int main() { int ee=1; scanf("%d",&t); while (t--) { printf("Case %d:\n",ee++); memset(a,0,sizeof(a)); scanf("%d",&n); for (int i = 1; i <=n; i++) { cin >> e; add(i,e); } while (1) { scanf("%s",ch); if (ch[0] == 'Q') { int x,y; scanf("%d %d",&x,&y); printf("%d\n",sum(y)-sum(x-1)); } if (ch[0] == 'A') { int x,y; scanf("%d %d ",&x,&y); add(x,y); } if (ch[0] == 'S') { int x,y; scanf("%d %d ",&x,&y); add(x,-y); } if (ch[0] == 'E') { break; } } } return 0; }