1085 Perfect Sequence (25 point(s))
Given a sequence of positive integers and another positive integer p. The sequence is said to be a perfect sequence if M≤m×p where M and m are the maximum and minimum numbers in the sequence, respectively.
Now given a sequence and a parameter p, you are supposed to find from the sequence as many numbers as possible to form a perfect subsequence.
Input Specification:
Each input file contains one test case. For each case, the first line contains two positive integers N and p, where N (≤105) is the number of integers in the sequence, and p (≤109) is the parameter. In the second line there are N positive integers, each is no greater than 109.
Output Specification:
For each test case, print in one line the maximum number of integers that can be chosen to form a perfect subsequence.
Sample Input:
10 8
2 3 20 4 5 1 6 7 8 9
Sample Output:
8
经验总结:
这一题,两种方法,二分查找,或者用二指针,难度不大,先排序,再依次查找即可~
AC代码
二分查找:
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=100010;
int a[maxn],n,p;
int main()
{
scanf("%d%d",&n,&p);
for(int i=0;i<n;++i)
scanf("%d",&a[i]);
sort(a,a+n);
int len=-1;
for(int i=0;i<n;++i)
{
int *x=upper_bound(a+i+1,a+n,(long long)a[i]*p);
len=len>x-a-i?len:x-a-i;
}
printf("%d\n",len);
return 0;
}
二指针:
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=100010;
int a[maxn],n,p;
int main()
{
scanf("%d%d",&n,&p);
for(int i=0;i<n;++i)
scanf("%d",&a[i]);
sort(a,a+n);
int len=1,i=0,j=0;
while(i<n&&j<n)
{
while(j<n&&a[j]<=(long long)a[i]*p)
{
len=len>j-i+1?len:j-i+1;
++j;
}
++i;
}
printf("%d\n",len);
return 0;
}