HDU 4893(线段树区间更新)

Wow! Such Sequence!

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 3856    Accepted Submission(s): 1085


Problem Description
Recently, Doge got a funny birthday present from his new friend, Protein Tiger from St. Beeze College. No, not cactuses. It's a mysterious blackbox.

After some research, Doge found that the box is maintaining a sequence an of n numbers internally, initially all numbers are zero, and there are THREE "operations":

1.Add d to the k-th number of the sequence.
2.Query the sum of ai where l ≤ i ≤ r.
3.Change ai to the nearest Fibonacci number, where l ≤ i ≤ r.
4.Play sound "Chee-rio!", a bit useless.

Let F0 = 1,F1 = 1,Fibonacci number Fn is defined as Fn = Fn - 1 + Fn - 2 for n ≥ 2.

Nearest Fibonacci number of number x means the smallest Fn where |Fn - x| is also smallest.

Doge doesn't believe the machine could respond each request in less than 10ms. Help Doge figure out the reason.
 

Input
Input contains several test cases, please process till EOF.
For each test case, there will be one line containing two integers n, m.
Next m lines, each line indicates a query:

1 k d - "add"
2 l r - "query sum"
3 l r - "change to nearest Fibonacci"

1 ≤ n ≤ 100000, 1 ≤ m ≤ 100000, |d| < 231, all queries will be valid.
 

Output
For each Type 2 ("query sum") operation, output one line containing an integer represent the answer of this query.
 

Sample Input
1 1 2 1 1 5 4 1 1 7 1 3 17 3 2 4 2 1 5
 

Sample Output
0 22
 
#include <iostream>
#include <stdio.h>
#include <cmath>
#include <algorithm>
#include <string.h>
using namespace std;
#define  ll __int64
const int maxn=100000+10;
ll fib[100],ans=0;
void fun()
{
    fib[0]=1;
    fib[1]=1,fib[2]=1;
    for(ll i=3;i<=90;i++)
        fib[i]=fib[i-1]+fib[i-2];
}
struct Node
{
    int l,r,flag;// flag=1  说明是fib标记
    ll sum,fsum;
    int mid()
    {
        return (l+r)/2;
    }
}tree[maxn*6];
ll Find(int l,int r,__int64 seach)
{
    while(l<=r)
    {
        int mid=(l+r)/2;
        if(fib[mid]<=seach)
            l=mid+1;
        else
            r=mid-1;
    }
    if(fib[l]-seach>=seach-fib[r])
        return fib[r];
    else
        return fib[l];
}
void Buildtree(int rt,int l,int r)
{
    tree[rt].l=l;
    tree[rt].r=r;
    tree[rt].flag=tree[rt].sum=0;
    tree[rt].fsum=0;
    if(l!=r)
    {
        Buildtree(2*rt,l,(l+r)/2);
        Buildtree(2*rt+1,(l+r)/2+1,r);
        tree[rt].fsum=tree[2*rt].fsum+tree[2*rt+1].fsum;
        tree[rt].sum=tree[2*rt].sum+tree[rt*2+1].sum;
    }
    else
        tree[rt].fsum=1;
}
void Pushdown(int rt)
{
    tree[2*rt].sum=tree[2*rt].fsum;
    tree[2*rt+1].sum=tree[2*rt+1].fsum;
    tree[2*rt].flag=tree[2*rt+1].flag=1;
    tree[rt].flag=0;
}
void Pushup(int rt)
{
    tree[rt].sum=tree[2*rt].sum+tree[2*rt+1].sum;
    tree[rt].fsum=tree[2*rt].fsum+tree[2*rt+1].fsum;
}
void Update(int rt,int k,int d)
{
    if(tree[rt].flag) Pushdown(rt);
    if(tree[rt].l==tree[rt].r&&tree[rt].l==k)
    {
        tree[rt].sum+=d;
        tree[rt].fsum=Find(1,90,tree[rt].sum);
        tree[rt].flag=0;
        return;
    }
    if(k<=tree[rt].mid())
        Update(2*rt,k,d);
    else
        Update(2*rt+1,k,d);
    Pushup(rt);
}
void Update_1(int rt,int l,int r)
{
    if(tree[rt].flag)Pushdown(rt);
    if(tree[rt].l==l&&tree[rt].r==r)
    {
        tree[rt].sum=tree[rt].fsum;
        tree[rt].flag=1;
        return;
    }
    if(r<=tree[rt].mid())
        Update_1(2*rt,l,r);
    else if(l>tree[rt].mid())
        Update_1(2*rt+1,l,r);
    else
    {
        Update_1(2*rt,l,tree[rt].mid());
        Update_1(2*rt+1,tree[rt].mid()+1,r);
    }
    Pushup(rt);
}
void Query(int rt,int l,int r)
{
    if(tree[rt].flag)Pushdown(rt);
    if(tree[rt].l==l&&tree[rt].r==r)
    {
        ans+=tree[rt].sum;
        return;
    }
    if(r<=tree[rt].mid())
        Query(2*rt,l,r);
    else if(l>tree[rt].mid())
        Query(2*rt+1,l,r);
    else
    {
        Query(2*rt,l,tree[rt].mid());
        Query(2*rt+1,tree[rt].mid()+1,r);
    }
}
int main()
{
    int n,m;
    fun();
    while(~scanf("%d%d",&n,&m))
    {
        Buildtree(1,1,n);
        while(m--)
        {
            int type,l,r;
            scanf("%d%d%d",&type,&l,&r);
            if(type==1)
                Update(1,l,r);
            else if(type==3)
                Update_1(1,l,r);
            else if(type==2)
            {
                ans=0;
                Query(1,l,r);
                printf("%I64d\n",ans);
            }
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值