hdu 1796 How many integers can you find(容斥原理)

本文介绍了一个关于寻找小于给定整数N且能被特定集合中任意整数整除的所有整数的问题,并通过样例说明了如何利用容斥原理解决该问题。文章提供了完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

How many integers can you find



Problem Description
  Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10}, all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.
 

Input
  There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0<N<2^31,0<M<=10, and the M integer are non-negative and won’t exceed 20.
 

Output
  For each case, output the number.
 

Sample Input
  
12 2 2 3
 

Sample Output
  
7
 

Author
wangye
 

Source


简单的容斥原理
答案等于整除1个数的和-整除2个数的和+整除3个数的和……
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#define LL long long
using namespace std;
int n,m,cnt;
LL ans,a[30];
long long gcd(LL a,LL b)
{
    return b==0?a:gcd(b,a%b);
}
void DFS(int cur,LL lcm,int id)
{
    lcm=a[cur]/gcd(a[cur],lcm)*lcm;
    if(id&1)
        ans+=(n-1)/lcm;
    else
        ans-=(n-1)/lcm;
    for(int i=cur+1;i<cnt;i++)
        DFS(i,lcm,id+1);
}
int main()
{
    while(~scanf("%d%d",&n,&m)){
        cnt=0;
        int x;
        while(m--)
        {
            scanf("%d",&x);
            if(x!=0)   
                a[cnt++]=x;
        }
        ans=0;
        for(int i=0;i<cnt;i++)
            DFS(i,a[i],1);
        cout<<ans<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值