Card Collector
As a smart boy, you notice that to win the award, you must buy much more snacks than it seems to be. To convince your friends not to waste money any more, you should find the expected number of snacks one should buy to collect a full suit of cards.
Note there is at most one card in a bag of snacks. And it is possible that there is nothing in the bag.
You will get accepted if the difference between your answer and the standard answer is no more that 10^-4.
1 0.1 2 0.1 0.4
10.000 10.500
转自http://www.cnblogs.com/zhj5chengfeng/archive/2013/03/02/2939601.html
由于卡片最多只有 20 种,使用状态压缩,用 0 表示这种卡片没有收集到, 1 表示这种卡片收集到了
令:f[s] 表示已经集齐的卡片种类的状态的情况下,收集完所有卡片需要买东西次数的期望
买一次东西,包装袋中可能:
1. 没有卡片
2. 卡片是已经收集到的
3. 卡片是没有收集到的
于是有:
f[s] = 1 + ((1-segma{ p[i] })f[s]) + (segma{ p[j]*f[s] }) + (segma{ p[k]*f[s|(1<<k)] })
其中: i=0,2,...,n-1
j=第 j 种卡片已经收集到了,即 s 从右往左数第 j 位是 1:s&(1<<j)!=0
k=第 k 种卡片没有收集到,即 s 从右往左数第 k 位是 0:s&(1<<k)==0
移项可得:
segma{ p[i] }f[s] = 1 + segma{ p[i]*f[s|(1<<i) },i=第i 种卡片没有收集到
目标状态是:f[0]
#include<cstdio>
using namespace std;
double f[1<<20],p[20];
int main()
{
int n,i,s,N;
while(scanf("%d",&n)!=EOF)
{
for(i=0;i<n;i++)
scanf("%lf",&p[i]);
N=(1<<n)-1;
f[N]=0;
for(s=N-1;s>=0;s--)
{
double temp=0;
f[s]=1;
for(i=0;i<n;i++)
{
if(s&(1<<i))
continue;
f[s]+=f[s|(1<<i)]*p[i];
temp+=p[i];
}
f[s]/=temp;
}
printf("%lf\n",f[0]);
}
return 0;
}