[Codeforces 545E] Paths and Trees

本文详细解析了Codeforces竞赛中一道关于最短路径生成树的题目,介绍了如何通过Dijkstra算法找到从指定节点到所有其他节点的最短路径,并构建最短路径生成树。文章提供了完整的C++代码实现,包括优先队列的应用和最短路径的更新策略。

[题目链接]

        https://codeforces.com/contest/545/problem/E

[算法]

        首先求 u 到所有结点的最短路

        记录每个节点最短路径上的最后一条边

        答案即为以u为根的一棵最短路径生成树

        时间复杂度 : O(NlogN)

[代码]

       

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 3e5 + 10;
const long long INF = 1e60;

struct edge
{
        int to , w , nxt;
} e[MAXN << 1];

int n , m , s , tot;
int head[MAXN],u[MAXN],v[MAXN],w[MAXN],last[MAXN];
long long dist[MAXN];
bool visited[MAXN],vis[MAXN << 1];

template <typename T> inline void chkmax(T &x,T y) { x = max(x,y); }
template <typename T> inline void chkmin(T &x,T y) { x = min(x,y); }
template <typename T> inline void read(T &x)
{
    T f = 1; x = 0;
    char c = getchar();
    for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
    for (; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + c - '0';
    x *= f;
}
inline void addedge(int u,int v,int w)
{
        tot++;
        e[tot] = (edge){v,w,head[u]};
        head[u] = tot;
}
inline void dijkstra(int s)
{
        priority_queue< pair<long long,int> , vector< pair<long long,int> > ,greater< pair<long long,int> > > q;
        for (int i = 1; i <= n; i++)
        {
                dist[i] = INF;
                visited[i] = false;        
        }        
        dist[s] = 0;
        q.push(make_pair(0,s));
        while (!q.empty())
        {
                int cur = q.top().second;
                q.pop();
                if (visited[cur]) continue;
                visited[cur] = true;
                for (int i = head[cur]; i; i = e[i].nxt)
                {
                        int v = e[i].to , w = e[i].w;
                        if (!visited[v] && dist[cur] + w <= dist[v])
                        {
                                if (dist[cur] + w < dist[v]) last[v] = i;
                                else if (w < e[last[v]].w) last[v] = i;
                                dist[v] = dist[cur] + w;
                                q.push(make_pair(dist[v],v));
                        }
                }
        }
}

int main()
{
        
        read(n); read(m);
        for (int i = 1; i <= m; i++)
        {
                read(u[i]); read(v[i]); read(w[i]);
                addedge(u[i],v[i],w[i]);
                addedge(v[i],u[i],w[i]); 
        } 
        read(s);
        dijkstra(s);
        for (int i = 1; i <= n; i++) vis[last[i]] = true;
        vector< int > ans;
        long long res = 0;
        for (int i = 2; i <= tot; i += 2)
        {
                if (vis[i] || vis[i - 1])
                {
                        ans.push_back(i >> 1);
                        res += e[i].w;
                }
        }
        printf("%I64d\n",res);
        for (unsigned i = 0; i < ans.size(); i++) 
                if (i == 0) printf("%d",ans[i]); 
                else printf(" %d",ans[i]);
        printf("\n");
        
        return 0;
    
}

 

转载于:https://www.cnblogs.com/evenbao/p/9745950.html

### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值