先遍历图中的所有节点,把其入度为零的节点先入队
然后进入循环,每次出队一个元素,把该元素所指向节点的入度减1,当发现对应节点减完1后入度为零,则入队
list<Node*> sortedTopology(Graph graph){
unordered_map<Node*, int> inMap;
queue<Node*> queue;
unordered_map<int,Node*>::iterator ite = graph.nodes.begin();
//遍历图中的所有节点,把其入度为零的节点先入队
while(ite != graph.nodes.end()){
inMap[ite->second] = ite->second->in;
if(ite->second->in == 0){
queue.push(ite->second);
}
ite++;
}
list<Node*> list;
Node* help;
//循环中,每次出队一个元素,把该元素所指向节点的入度减1,当发现对应节点减完1后入度为零,则入队
while(!queue.empty()){
help = queue.front();
queue.pop();
list.push_back(help);
// cout << " " << help->value << endl;
for(auto node : help->next){
inMap.find(node)->second = (inMap.find(node)->second -1);
if(inMap.find(node)->second == 0)
queue.push(node);
}
}
return list;
}
总的代码:
#include<iostream>
#include<list>
#include<queue>
#include<stack>
#include<unordered_map>
#include<unordered_set>
using namespace std;
//解依赖
class Edge;
class Node{
public:
int value;
int in;
int out;
list<Node*> next;
list<Edge*> edges;
Node(int value){
this->value = value;
in = 0;
out =0;
}
};
class Edge{
public:
int weight;
Node* from;
Node* to;
Edge(int weight,Node* from, Node* to){
this->weight = weight;
this->from = from;
this->to = to;
}
};
class Graph{
public:
unordered_map<int, Node*> nodes;
unordered_set<Edge*> edges;
};
class GraphGenerator{
public:
Graph createGraph(int matrix[][3],int rows, int col){
Graph graph;
for(int i=0;i<rows;i++){
int weight = matrix[i][0];
int from = matrix[i][1];
int to = matrix[i][2];
if(graph.nodes.find(from) == graph.nodes.end()){
graph.nodes[from] = new Node(from);
}
if(graph.nodes.find(to) == graph.nodes.end()){
graph.nodes[to] = new Node(to);
}
//以上两个if操作后,必能找到 from 好人to节点
Node* fromNode = graph.nodes.find(from)->second;
Node* toNode = graph.nodes.find(to)->second;
//为 graph 和 from所在的node 准备 一条边
Edge* newEdge = new Edge(weight, fromNode, toNode);
//对于新增的一条边, 被指向节点的入度+1
toNode->in++;
//对于新增的一条边, 指向节点的出度+1,所指向的节点确定,指向该节点的边确定
fromNode->out++;
fromNode->next.push_back(toNode);
fromNode->edges.push_back(newEdge);
//两个if会保证建立节点,这里保证 边的存在。
graph.edges.insert(newEdge);
}
return graph;
}
};
list<Node*> sortedTopology(Graph graph){
unordered_map<Node*, int> inMap;
queue<Node*> queue;
unordered_map<int,Node*>::iterator ite = graph.nodes.begin();
//遍历图中的所有节点,把其入度为零的节点先入队
while(ite != graph.nodes.end()){
inMap[ite->second] = ite->second->in;
if(ite->second->in == 0){
queue.push(ite->second);
}
ite++;
}
list<Node*> list;
Node* help;
//循环中,每次出队一个元素,把该元素所指向节点的入度减1,当发现对应节点减完1后入度为零,则入队
while(!queue.empty()){
help = queue.front();
queue.pop();
list.push_back(help);
// cout << " " << help->value << endl;
for(auto node : help->next){
inMap.find(node)->second = (inMap.find(node)->second -1);
if(inMap.find(node)->second == 0)
queue.push(node);
}
}
return list;
}
int main(){
GraphGenerator g;
// int matrix[][3]= {{1,1,2},{2,2,3},{3,3,1}};
int matrix[][3]={{0,1,2},{0,1,3},{0,1,4},{0,2,3},{0,2,7},{0,7,3},
{0,3,5},{0,4,6}};
int length = sizeof(matrix)/sizeof(matrix[0]);
Graph graph = g.createGraph(matrix, length,3);
Node* node = graph.nodes.find(1)->second;
list<Node*> list = sortedTopology(graph);
std::list<Node*>::iterator ite = list.begin();
while(ite != list.end()){
cout << (*ite)->value<<endl;
ite++;
}
return 0;
}

5万+

被折叠的 条评论
为什么被折叠?



