POJ3041--Asteroids--二分图最大匹配--Konig

本文介绍了一个基于二分图最大匹配的问题——使用最少次数的武器射击来清除太空中的所有陨石。利用Konig定理,通过寻找最小覆盖数等同于最大匹配数的方法,解决了这一问题。文章提供了一种高效的算法实现方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

Bessie wants to navigate her spaceship through a dangerous asteroid field in the shape of an N x N grid (1 <= N <= 500). The grid contains K asteroids (1 <= K <= 10,000), which are conveniently located at the lattice points of the grid.

Fortunately, Bessie has a powerful weapon that can vaporize all the asteroids in any given row or column of the grid with a single shot.This weapon is quite expensive, so she wishes to use it sparingly.Given the location of all the asteroids in the field, find the minimum number of shots Bessie needs to fire to eliminate all of the asteroids.

Input

* Line 1: Two integers N and K, separated by a single space.
* Lines 2..K+1: Each line contains two space-separated integers R and C (1 <= R, C <= N) denoting the row and column coordinates of an asteroid, respectively.

Output

* Line 1: The integer representing the minimum number of times Bessie must shoot.

Sample Input

3 4
1 1
1 3
2 2
3 2

Sample Output

2

Hint

INPUT DETAILS:
The following diagram represents the data, where "X" is an asteroid and "." is empty space:
X.X
.X.
.X.


//此题用到Konig定理。即最少覆盖数==最大匹配数。
然后就是个很简单的二分图最大匹配问题。
X集为横坐标,Y集为纵坐标。xiyi边为炸弹。则只需要每条边(即每个炸弹)至少有一个点和xi或者yi关联。然后就是Konig
#include <iostream>
#include <cstdio>
#include <vector>
using namespace std;
vector <int> ans[1008];
bool vis[1008];
int marry[1008];
int sum;
bool dfs(int u)
{
	for(int i=0;i<ans[u].size();i++)
	{
		if(!vis[ans[u][i]])
		{
			vis[ans[u][i]]=1;
			if(!marry[ans[u][i]]||dfs(marry[ans[u][i]]))
			{
				marry[ans[u][i]]=u;//这里不用互为夫妻。。因为dfs的永远是一方。
				return 1;
			}
		}
	}
	return 0;
}
int main()
{
	int n,k;//n<=500,k<=10000
	while(scanf("%d%d",&n,&k)==2)
	{
		sum=0;
		int u,v;
		for(int i=1;i<=2*n+10;i++)
		{
			ans[i].clear();
		}
		for(int i=1;i<=k;i++)
		{
			scanf("%d%d",&u,&v);
			v=v+n;
			ans[u].push_back(v);
		}
		for(int i=1;i<=n;i++)
		{
			memset(vis,0,sizeof(vis));
			if(dfs(i))
			{
				sum++;
			}
		}
		cout<<sum<<endl;
	}
	return 0;
}
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define maxn 1008
#define edge 21000
#define inf 0x3f3f3f3f
int first[maxn],dis[maxn],num[maxn];
int vv[edge],ww[edge],nxt[edge];
int e,NN;
void addEdge(int u,int v,int w)
{
	vv[e] = v;ww[e] = w;nxt[e] = first[u];first[u] = e++;
	vv[e] = u;ww[e] = 0;nxt[e] = first[v];first[v] = e++;
}
inline int min(int a,int b)
{
	return a>b?b:a;
}
int dfs(int u,int s,int d,int cost)
{
	if(u == d) return cost;
	int ans = 0;
	int _min = NN;
	for(int i=first[u];i!=-1;i=nxt[i])
	{
		int v = vv[i];
		if(ww[i])
		{
			if(dis[v] + 1 == dis[u])
			{
				int t = dfs(v,s,d,min(ww[i],cost));
				ww[i] -= t;
				ww[i^1] += t;
				ans += t;
				cost -= t;
				if(dis[s] == NN) return ans;
				if(!cost) break;
			}
			if(_min > dis[v])
					_min = dis[v];
		}
	}
	if(!ans)
	{
		if(--num[dis[u]] == 0) dis[s] = NN;
		dis[u] = _min + 1;
		++num[dis[u]];
	}
	return ans;
}
int isap(int s,int d)
{
	memset(dis,0,sizeof(dis));
	memset(num,0,sizeof(num));
	num[0] = NN;
	int ans = 0;
	while(dis[s] < NN)
			ans += dfs(s,s,d,inf);
	return ans;
}
int main()
{
	//freopen("in.txt","r",stdin);
	int n,m;
	while(scanf("%d%d",&n,&m)==2)
	{
		memset(first,-1,sizeof(first));
		e = 0;
		NN = 2*n + 2;
		for(int i=1;i<=n;i++)
		{
			addEdge(0,i,1);
		}
		for(int i=n+1;i<=2*n;i++)
		{
			addEdge(i,2*n+1,1);
		}
		for(int i=1;i<=m;i++)
		{
			int u,v;
			scanf("%d%d",&u,&v);
			v += n;
			addEdge(u,v,1);
		}
		int ans = isap(0,2*n+1);
		printf("%d\n",ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值