题意:一个长度为 n n n 的序列,现在有 m m m 个提问,每个提问包括一个区间 [ l , r ] [l,r] [l,r],询问该区间内有多少对 ( a i , a j ) ( i < j ) (a_i,a_j)(i<j) (ai,aj)(i<j) 满足 ∣ a i − a j ∣ < = K |a_i - a_j| <= K ∣ai−aj∣<=K
思路:由于 K K K 值给定,那么( K = 0 K=0 K=0 时)其实相当于是求逆序对,所以类推 K K K 为其他数时同样也是求逆序对,由于 a i a_i ai 的值过大,所以要把所有 a i a_i ai, a i − K a_i-K ai−K, a i + K a_i+K ai+K 存下来从小到大去重+离散化,之后用莫队处理询问:离线存下所有询问,分块后根据询问左右端点所属的块进行排序,在莫队的左右指针移动时,通过树状数组维护,类比在首尾删除一个数或者增加一个数导致整个区间的逆序对数变化。
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define PI acos(-1)
#define INF 0x3f3f3f3f
#define NUM 27010
#define debug true
#define lowbit(x) ((-x)&x)
#define ffor(i,d,u) for(int i=(d);i<=(u);++i)
#define _ffor(i,u,d) for(int i=(u);i>=(d);--i)
#define mst(array,Num,Kind,Count) memset(array,Num,sizeof(Kind)*(Count))
const int P = 1e9+7;
template <typename T>
void read(T& x)
{
x=0;
char c;T t=1;
while(((c=getchar())<'0'||c>'9')&&c!='-');
if(c=='-'){t=-1;c=getchar();}
do(x*=10)+=(c-'0');while((c=getchar())>='0'&&c<='9');
x*=t;
}
template <typename T>
void write(T x)
{
int len=0;char c[21];
if(x<0)putchar('-'),x*=(-1);
do{++len;c[len]=(x%10)+'0';}while(x/=10);
_ffor(i,len,1)putchar(c[i]);
}
int n, n1, m, K;
int a[NUM], b[NUM * 3], block_size, belong[NUM];
map<int, int> mma;
struct query
{
int l, r, id;
bool operator<(const query &x)const
{
return (belong[l] ^ belong[x.l]) ? belong[l] < belong[x.l] : ((belong[l] & 1) ? r < x.r : r > x.r);
}
}q[NUM];
int bit[NUM * 3] = {}, pos[NUM], lpos[NUM], rpos[NUM];
inline void add(int r, int x)
{
while (r <= n1)
bit[r] += x, r += lowbit(r);
}
inline int sum(int r)
{
int ans = 0;
while (r)
ans += bit[r], r -= lowbit(r);
return ans;
}
int final_ans[NUM];
int AC()
{
read(n), read(m), read(K), block_size = n / sqrt(m), n1 = n * 3;
ffor(i, 1, n) read(a[i]), b[i] = a[i], b[i + n] = b[i] + K, b[i + 2 * n] = b[i] - K;
sort(b + 1, b + 1 + n1);
n1 = unique(b + 1, b + 1 + n1) - b - 1;
ffor(i, 1, n1) mma[b[i]] = i;
for (int i = 1; i <= n; i += block_size)
for (int j = i; j <= n && j < i + block_size; ++j)
belong[j] = i, pos[j] = mma[a[j]], lpos[j] = mma[a[j] - K], rpos[j] = mma[a[j] + K];
ffor(i, 1, m) read(q[i].l), read(q[i].r), q[i].id = i;
sort(q + 1, q + 1 + m);
int l = 1, r = 0, cnt = 0;
ffor(i, 1, m)
{
while (r < q[i].r)
++r, cnt += (sum(rpos[r]) - sum(lpos[r] - 1)), add(pos[r], 1);
while (l > q[i].l)
--l, cnt += (sum(rpos[l]) - sum(lpos[l] - 1)), add(pos[l], 1);
while (r > q[i].r)
add(pos[r], -1), cnt -= (sum(rpos[r]) - sum(lpos[r] - 1)), --r;
while (l < q[i].l)
add(pos[l], -1), cnt -= (sum(rpos[l]) - sum(lpos[l] - 1)), ++l;
final_ans[q[i].id] = cnt;
}
ffor(i, 1, m) write(final_ans[i]), putchar('\n');
}
int main()
{
AC();
return 0;
}