POJ - 1458 Common Subsequence (最长公共子序列)

本文深入探讨了最长公共子序列问题,通过动态规划的方法,详细解析了如何求解两个字符串的最长公共子序列的长度,并提供了完整的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

                                                                            Common Subsequence

Time Limit: 1000MS

 

Memory Limit: 10000K

Total Submissions: 69580

 

Accepted: 29165

Description

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

Input

The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

Output

For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

Sample Input

abcfbc         abfcab

programming    contest

abcd           mnp

Sample Output

4

2

0

 

  
   

思路:裸的最长公共子序列,用dp[ i ][ j ] 代表字符串 a 的前 i 个字符和字符串 b 的前 j 个字符的最长公共子序列的长度。

状态转移方程:

a[ i ] == b[ j ] 时 , dp[ i ][ j ] = dp[ i - 1 ][ j - 1 ] + 1

a[ i ] != b[ j ] 时 , dp[ i ][ j ] = max( dp[ i - 1 ][ j ],dp[ i ][ j - 1 ] )

//#include <bits/stdc++.h>
#include <map>
//#include <tr1/unordered_map>
#include<limits>
#include <float.h>
#include <list>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
inline int lowbit(int x){ return x & (-x); }
inline int read(){int X = 0, w = 0; char ch = 0;while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
    while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();return w ? -X : X;}
inline int gcd(int a, int b){ return b ? gcd(b, a % b) : a; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Sca2(x,y) scanf("%d%d",&x,&y)
#define Sca3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define Scl(x) scanf("%lld",&x)
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x)
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define db double
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
const double pi = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e6 + 10;
const int maxp = 1e3 + 10;
const LL INF = 0x3f3f3f3f;
const int inf = 0x3f3f3f3f;
const int mod = 20090717;

char a[1010], b[1010];
int dp[1010][1010];

int main(){
    while (~scanf("%s%s", a, b)){
        int n = strlen(a), m = strlen(b);
        dp[0][0] = 0;
        For (i, 1, n)
        For (j, 1, m)
            if (a[i-1] == b[j-1]) //之所以这样是因为字符串的下标是从 0 开始的
                dp[i][j] = dp[i-1][j-1] + 1;
            else
                dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
        Pri(dp[n][m]);
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值