Ignatius and the Princess IV
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32767 K (Java/Others)
Total Submission(s): 51687 Accepted Submission(s): 23265
Problem Description
"OK, you are not too bad, em... But you can never pass the next test." feng5166 says.
"I will tell you an odd number N, and then N integers. There will be a special integer among them, you have to tell me which integer is the special one after I tell you all the integers." feng5166 says.
"But what is the characteristic of the special integer?" Ignatius asks.
"The integer will appear at least (N+1)/2 times. If you can't find the right integer, I will kill the Princess, and you will be my dinner, too. Hahahaha....." feng5166 says.
Can you find the special integer for Ignatius?
Input
The input contains several test cases. Each test case contains two lines. The first line consists of an odd integer N(1<=N<=999999) which indicate the number of the integers feng5166 will tell our hero. The second line contains the N integers. The input is terminated by the end of file.
Output
For each test case, you have to output only one line which contains the special number you have found.
Sample Input
5 1 3 2 3 3 11 1 1 1 1 1 5 5 5 5 5 5 7 1 1 1 1 1 1 1
Sample Output
3 5 1
题意:输出 N 个数中出现超过至少 (N + 1) / 2 次的 special integer
思路:用 map 统计每个数出现的次数,大于 (N + 1) / 2的输出即可
//#include <bits/stdc++.h>
#include <map>
//#include <tr1/unordered_map>
#include<limits>
#include <float.h>
#include <list>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
inline int lowbit(int x){ return x & (-x); }
inline int read(){int X = 0, w = 0; char ch = 0;while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();return w ? -X : X;}
inline int gcd(int a, int b){ return b ? gcd(b, a % b) : a; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Sca2(x,y) scanf("%d%d",&x,&y)
#define Sca3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define Scl(x) scanf("%lld",&x)
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x)
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define db double
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
const double pi = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e6 + 10;
const int maxp = 1e3 + 10;
const LL INF = 0x3f3f3f3f;
const int inf = 0x3f3f3f3f;
const int mod = 20090717;
int main()
{
LL n, m, x, ans;
while (~scanf("%lld", &n)){
m = (n + 1) / 2;
map<LL, LL> maps;
For (i, 1, n){
Scl(x);
maps[x]++;
if (maps[x] >= m)
ans = x;
}
Prl(ans);
}
return 0;
}