机器学习实战-kNN

from numpy import *
import operator

def classify0(inX,dataSet,labels,k):
    dataSetSize=dataSet.shape[0]
    diffMat=tile(inX,(dataSetSize,1))-dataSet
    sqDiffMat=diffMat**2
    sqDistances=sqDiffMat.sum(axis=1)
    distances=sqDistances**0.5
    sortedDisIndicies=distances.argsort()
    classCount={}
    for i in range(k):
        voteIlabel=labels[sortedDisIndicies[i]]
        classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
    sortedClassCount=sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
    return sortedClassCount

def createDataSet():
    group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels = ['A','A','B','B']
    return group, labels

上面的是代码,第一次用python跟着做,很头疼啊,很多函数需要现查。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值