轨道角动量本征函数——球谐函数
1. 角动量算符对易关系
在量子力学中,矢量算符与角动量算符之间存在一些有用的对易关系,如下表所示:
|对易关系|表达式|
| ---- | ---- |
|$[\hat{J} i, \hat{T}_j]$|$i\hbar\hat{T}_k\epsilon {ijk}$|
|$[\hat{T} \pm, \hat{J}_z]$|$\mp\hbar\hat{T} \pm$|
|$[\hat{T} \pm, \hat{J}_x]$|$\pm\hbar\hat{T}_z$|
|$[\hat{T} \pm, \hat{J} y]$|$i\hbar\hat{T}_z$|
|$[\hat{T} \pm, \hat{J} \pm]$|$0$|
|$[\hat{T} \pm, \hat{J} \mp]$|$\pm2\hbar\hat{T}_z$|
|$[\hat{T}_z, \hat{J} \pm]$|$\pm\hbar\hat{T}_\pm$|
|$[\hat{J}, [\hat{T}_1 \cdot \hat{T}_2]]$|$0 \Rightarrow [\hat{J}, \hat{T}^2] = 0$|
|$[\hat{J}^2, [\hat{J}^2, \hat{T}]]$|$2\hbar^2 [\hat{J}^2 \hat{T} + \hat{T} \hat{J}^2] - 4\hbar^2 \hat{J} [\hat{J} \cdot \hat{T}]
超级会员免费看
订阅专栏 解锁全文
61

被折叠的 条评论
为什么被折叠?



