ACM-ICPC An Olympian Math Problem(找规律)

本文介绍了一道关于阶乘和模运算的数学竞赛题目,通过观察规律简化计算过程,最终得出简便的解答方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Alice, a student of grade 6, is thinking about an Olympian Math problem, but she feels so despair that she cries. And her classmate, Bob, has no idea about the problem. Thus he wants you to help him. The problem is:

We denote k!:

k! = 1 × 2 × ⋯ × (k − 1) × k

We denote S:

S = 1 × 1! + 2 × 2! + ⋯ + (n − 1) × (n − 1)!

Then S module n is

You are given an integer n.
You have to calculate S modulo n.

Input

The first line contains an integer T (T ≤ 1000), denoting the number of test cases. For each test case, there is a line which has an integer n.
It is guaranteed that 2 ≤ n ≤ 10^18 .

Output

For each test case, print an integer S modulo n.

Hint

The first test is: S = 1 × 1! = 1, and 1 modulo 2 is 1.

The second test is: S = 1 × 1! + 2 × 2! = 5 , and 5 modulo 3is 2.
样例输入 复制
2
2
3
样例输出 复制
1
2
打表找规律,可以简单列举前20个较小的数发现结果都是n-1。
打表代码:

#include<bits/stdc++.h>
#define LL long long
using namespace std;
LL del(LL a)
{
    LL temp=1;
    for(LL i=1;i<=a;i++)
        temp*=i;
    return temp;
}
int main()
{
    int t;scanf("%d",&t);
    while(t--)
    {
        LL n;scanf("%lld",&n);
        LL sum=0,k;
        for(LL i=1;i<n;i++)
        {
            sum+=i*del(i);
        }
        cout<<sum%n<<endl;
    }
    return 0;
}

AC代码:

#include<bits/stdc++.h>
#define LL long long
using namespace std;
int main()
{
    int t;scanf("%d",&t);
    while(t--)
    {
        LL n;scanf("%lld",&n);
        cout<<n-1<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值