Dijkstra算法-最短路径问题+例题

本文介绍了如何利用Dijkstra算法解决城市街道中从起点到终点的最大承重路径问题。给定城市规划和街道重量限制,目标是找出从Hugo的位置到客户位置的最大可运输重量。输入包括交叉点数量和街道信息,输出为最大允许重量。示例展示了一个包含3个交叉点的场景,使用Dijkstra算法寻找最短路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Background
Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight.
Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know.

背景
Hugo Heavy很高兴。
在Cargolifter项目破裂后,他现在可以扩展业务。
但他需要一个聪明的人告诉他,他的客户是否真的有办法将他的巨型钢制起重机建造到需要所有街道都能承受重量的地方。
幸运的是,他已经有了所有街道和桥梁以及所有允许重量的城市规划。不幸的是,他不知道如何找到最大重量能力,以告诉他的客户起重机有多重。
但你肯定知道。

Problem
You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值