java实现BellmanFord算法

这篇博客详细介绍了如何使用Java实现Bellman-Ford算法,该算法用于求解加权连通图中单源最短路径问题,即使在存在负权边的情况下也能找到最短路径。文章首先阐述了算法的基本思想和步骤,接着提供了具体的编码实现,并分析了算法的时间复杂度为O(V*E)。通过示例展示了从顶点A出发计算到图中所有其他顶点的最短距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 问题描述
何为BellmanFord算法?

BellmanFord算法功能:给定一个加权连通图,选取一个顶点,称为起点,求取起点到其它所有顶点之间的最短距离,其显著特点是可以求取含负权图的单源最短路径。

BellmanFord算法思想:

第一,初始化所有点。每一个点保存一个值,表示从原点到达这个点的距离,将原点的值设为0,其它的点的值设为无穷大(表示不可达)。
第二,进行循环,循环下标为从1到n-1(n等于图中点的个数)。在循环内部,遍历所有的边,进行松弛计算。
第三,遍历途中所有的边(edge(u,v)),判断是否存在这样情况:如果d(v) > d (u) + w(u,v),则返回false,表示途中存在从源点可达的权为负的回路。

2 解决方案
2.1 具体编码

Bellman-Ford算法寻找单源最短路径的时间复杂度为O(V*E)。(V为给定图的顶点集合,E为给定图的边集合)

本文编码思想主要参考自文末参考资料1中博客,想要进一步了解,可以参考文末参考资料。

首先看下代码中所使用的连通图(PS:改图为无向连通图,所以每两个顶点之间均有两条边):

评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值