1 问题描述
Compute the Greatest Common Divisor of Two Integers using Sieve of Eratosthenes.
翻译:使用埃拉托色尼筛选法计算两个整数的最大公约数。(PS:最大公约数也称最大公因数,指两个或多个整数共有约数中最大的一个)
2 解决方案
2.1 埃拉托色尼筛选法原理简介
引用自百度百科:
埃拉托色尼筛选法(the Sieve of Eratosthenes)简称埃氏筛法,是古希腊数学家埃拉托色尼(Eratosthenes 274B.C.~194B.C.)提出的一种筛选法。 是针对自然数列中的自然数而实施的,用于求一定范围内的质数,它的容斥原理之完备性条件是p=H~。
具体求取质数的思想:
(1)先把1删除(现今数学界1既不是质数也不是合数)
(2)读取队列中当前最小的数2,然后把2的倍数删去
(3)读取队列中当前最小的数3,然后把3的倍数删去
(4)读取队列中当前最小的数5,然后把5的倍数删去
(5)如上所述直到需求的范围内所有的数均删除或读取
下面看一下执行上述步骤求不大于100的所有质数的一个示意图:
2.2 具体编码
本文求取两个数的最大公约数,采用质因数分解法:把每个数分别分解质因数,再把各数中的全部公有质因数提取出来连乘,所得的积就是这几个数的最大公约数。
例如:求24和60的最大公约数,先分解质因数,得24=2×2×2×3,60=2×2×3×5,24与60的全部公有的质因数是2、2、3,它们的积是2×2×3=12,所以,(24,60)=12。
此处,第一步,先使用埃拉托色尼筛选法求取不大于数A的所有质数,然后从这些质