第四届蓝桥杯JavaA组省赛真题

本文介绍了历年蓝桥杯编程竞赛中Java组的一些真题,包括判断世纪末年12月31日是否为星期日、跳格子问题、完全数计算、大数处理和找错价签等题目,涉及Java编程和算法应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论

题目1、世纪末的星期

题目描述
曾有邪教称1999年12月31日是世界末日。当然该谣言已经不攻自破。

还有人称今后的某个世纪末的12月31日,如果是星期一则会…

有趣的是,任何一个世纪末的年份的12月31日都不可能是星期一!!

于是,“谣言制造商”又修改为星期日…

1999年的12月31日是星期五,请问:未来哪一个离我们最近的一个世纪末年(即xx99年)的12月31日正好是星期天(即星期日)?

请回答该年份(只写这个4位整数,不要写12月31等多余信息)

解题思路
这里用到了Java中的一个日期API——Calendar(1970年后的日期才可以使用这个API)

只需从1999年开始每次增加100年遍历,看看对应世纪末年份12月31日是否为星期日即可停止遍历。

import java.util.Calendar;
 
public class Main {
 
	public static void main(String[] args) {
		Calendar calendar = Calendar.getInstance();
		for (int year = 1999; year < 10000; year += 100) {
			calendar.set(year, 11, 31);  // 注意0是代表1月份,所以12月份应该是11
			if (calendar.get(Calendar.DAY_OF_WEEK) == 1) {  // 这里星期日为1,星期一为2...
				System.out.println(year);
				break;
			}
		}
	}
 
}

结果
2299

提示:题意中埋了一个坑,它说1999年的12月31日是星期五,这里我们应该验证一下实际中这天是否为星期五再去解题。

我们可以用calendar.set(1999, 11, 31);和System.out.println(calendar.get(Calendar.DAY_OF_WEEK));这两句来看看输出结果是否为6

题目2、阶乘位数

题目描述
小明参加了学校的趣味运动会,其中的一个项目是:跳格子。

地上画着一些格子,每个格子里写一个字,如下所示:(也可参见p1.jpg)

从我做起振
我做起振兴
做起振兴中
起振兴中华

比赛时,先站在左上角的写着“从”字的格子里,可以横向或纵向跳到相邻的格子里,但不能跳到对角的格子或其它位置。一直要跳到“华”字结束。

要求跳过的路线刚好构成“从我做起振兴中华”这句话。

请你帮助小明算一算他一共有多少种可能的跳跃路线呢?

答案是一个整数,请通过浏览器直接提交该数字。
注意:不要提交解答过程,或其它辅助说明类的内容。

在这里插入图片描述

解题思路
这是一道简单的深搜题,我们可以把每个格子抽象为一个坐标,从(0,0),华(3,4)这样。题意说横向或纵向跳到相邻的格子里,但我们发现只有向下走或者向右走才能达到要求,向上走或者想左走都不可能达到要求。所以在路线的总数为所在格子向下走的线路数和想右走的线路数的总和,当走到下边界或者右边界时,线路就已经确定了。

结果:35

public class Main {
 
	public static void main(String[] args) {
		int ans = 0;
		ans = dfs(0, 0);
		System.out.println(ans);
	}
 
	public static int dfs(int i, int j) {
		if (i == 3 || j == 4) {
			return 1;
		}
		// dfs(i + 1, j):向下走的路线总数;dfs(i, j+ 1):向右走的路线总数
		return dfs(i + 1, j) + dfs(i, j + 1);
	}
}
题目3、梅森素数

题目描述
如果一个数字的所有真因子之和等于自身,则称它为“完全数”或“完美数”

例如:6 = 1 + 2 + 3

28 = 1 + 2 + 4 + 7 + 14

早在公元前300多年,欧几里得就给出了判定完全数的定理:

若 2^n - 1 是素数,则 2^(n-1) * (2^n - 1) 是完全数。

其中 ^ 表示“乘方”运算,乘方的优先级比四则运算高,例如:2^3 = 8, 2 * 2^3 = 16, 2^3-1 = 7

但人们很快发现,当n很大时,判定一个大数是否为素数到今天也依然是个难题。

因为法国数学家梅森的猜想,我们习惯上把形如:2^n - 1 的素数称为:梅森素数。

截止2013年2月,一共只找到了48个梅森素数。 新近找到的梅森素数太大,以至于难于用一般的编程思路窥其全貌,所以我们把任务的难度降低一点:

1963年,美国伊利诺伊大学为了纪念他们找到的第23个梅森素数 n=11213,在每个寄出的信封上都印上了“2^11213-1 是素数”的字样。

2^11213 - 1 这个数字已经很大(有3000多位),请你编程求出这个素数的十进制表示的最后100位。

答案是一个长度为100的数字串,请通过浏览器直接提交该数字。
注意:不要提交解答过程,或其它辅助说明类的内容。

import java.math.BigInteger;

public class Main {

	public static void main(String[] args) {

		BigInteger num = BigInteger.valueOf(2).pow(11213).subtract(BigInteger.ONE);
		String str = num+"";
		String answer = str.substring(str.length()-100);
		System.out.println(answer+" "+answer.length());
	}

}

题目4、颠倒的价牌

题目描述
小李的店里专卖其它店中下架的样品电视机,可称为:样品电视专卖店。

其标价都是4位数字(即千元不等)。

小李为了标价清晰、方便,使用了预制的类似数码管的标价签,只要用颜色笔涂数字就可以了(参见p1.jpg)。

这种价牌有个特点,对一些数字,倒过来看也是合理的数字。如:1 2 5 6 8 9 0 都可以。这样一来,如果牌子挂倒了,有可能完全变成了另一个价格,比如:1958 倒着挂就是:8561,差了几千元啊!!

当然,多数情况不能倒读,比如,1110 就不能倒过来,因为0不能作为开始数字。

有一天,悲剧终于发生了。某个店员不小心把店里的某两个价格牌给挂倒了。并且这两个价格牌的电视机都卖出去了!

庆幸的是价格出入不大,其中一个价牌赔了2百多,另一个价牌却赚了8百多,综合起来,反而多赚了558元。

请根据这些信息计算:赔钱的那个价牌正确的价格应该是多少?

答案是一个4位的整数,请通过浏览器直接提交该数字。
注意:不要提交解答过程,或其它辅助说明类的内容。
在这里插入图片描述

public class Main {
    public static void main(String[] args) {
        int k = 0;
        int x = 0;
        int[] k2 = new i
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值