一、Description
A simple mathematical formula for e is
e=Σ0<=i<=n1/i!
where n is allowed to go to infinity. This can actually yield very accurate approximations of e using relatively small values of n.
where n is allowed to go to infinity. This can actually yield very accurate approximations of e using relatively small values of n.
Input
No input
Output
Output the approximations of e generated by the above formula for the values of n from 0 to 9. The beginning of your output should appear similar to that shown below.
二、题解
注意精度的控制,结果控制在9位小数,String .format("%.9f",sum)。
三、java代码
二、题解
注意精度的控制,结果控制在9位小数,String .format("%.9f",sum)。
三、java代码
public class Main {
public static void main(String[] args) {
int i,j,fac;
double sum=2.5d;
System.out.println("n "+"e");
System.out.println("- "+"-----------");
System.out.println("0 "+"1");
System.out.println("1 "+"2");
System.out.println("2 "+"2.5");
for(i=3;i<10;i++){
fac=1;
for(j=1;j<=i;j++){
fac*=j;
}
sum+=1.0 /(fac);
System.out.print(i+" ");
System.out.println(String .format("%.9f",sum));
}
}
}
本文介绍了一种使用数学公式Σ0<=i<=n1/i!来近似计算自然常数e的方法,该方法允许n趋向于无穷大,从而得到e的精确值。文章详细解释了如何通过迭代计算不同n值下的e的近似值,并提供了一个Java代码示例,用于生成从n=0到n=9的e的近似值。
396

被折叠的 条评论
为什么被折叠?



