The cows have reconstructed Farmer John's farm, with its N barns (1 <= N <= 150, number 1..N) after the terrible earthquake last May. The cows didn't have time to rebuild any extra roads, so now there is exactly one way to get from any given barn to any
other barn. Thus, the farm transportation system can be represented as a tree.
Farmer John wants to know how much damage another earthquake could do. He wants to know the minimum number of roads whose destruction would isolate a subtree of exactly P (1 <= P <= N) barns from the rest of the barns.
* Lines 2..N: N-1 lines, each with two integers I and J. Node I is node J's parent in the tree of roads.
11 6 1 2 1 3 1 4 1 5 2 6 2 7 2 8 4 9 4 10 4 11
2
题目大概:
由n个节点组成的树,问最少需要删除几条边,才能形成一个p个节点组成的树。
思路:
dp[i][j]是第i个结点包含j个节点组成一棵树需要删除的边数。
开始要初始化 dp[i][1]=f[i].第i个结点的孩子数+1。 这个1是和父节点的联系。
然后遍历树,并利用初始化进行dp
状态转移方程
dp[x][j]=min(dp[x][j],dp[x][j-k]+dp[y][k]-2); 这里减去2是因为父亲和孩子之间有两个联系。因为之前加了一,
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std;
vector<int>f[160];
int dp[160][160];
int n,p;
int son[160];
void dfs(int x)
{
int l=f[x].size();
for(int i=0;i<l;i++)
{
int y=f[x][i];
dfs(y);
for(int j=p;j>1;j--)
{
for(int k=1;k<j;k++)
{
dp[x][j]=min(dp[x][j],dp[x][j-k]+dp[y][k]-2);
}
}
}
}
int main()
{
scanf("%d%d",&n,&p);
memset(son,0,sizeof(son));
for(int i=1;i<=n;i++)f[i].clear();
for(int i=1;i<n;i++)
{
int q,w;
scanf("%d%d",&q,&w);
f[q].push_back(w);
son[w]=1;
}
int root=1;
while(son[root])
{
root++;
}
for(int i=1;i<=n;i++)
{
dp[i][1]=f[i].size()+1;
for(int j=2;j<=p;j++)
{
dp[i][j]=10000;
}
}
dfs(root);
dp[root][p]--;
int ans=10000;
for(int i=1;i<=n;i++)
{
ans=min(ans,dp[i][p]);
}
printf("%d\n",ans);
return 0;
}