国庆郑州集训day1 下午:基本算法

本文介绍了多种算法的经典案例,包括递推、递归、分治、二分、倍增及贪心算法的应用。通过实例深入浅出地讲解了各种算法的核心思想及实现方式。

递推

计数DP也是递推的一部分

典型例题

(1)用1*2的骨牌覆盖2*n的矩形方阵
显然可以得到方程f[n]=f[n-1]+f[n-2]>>>>fibonacci数列
(2)长度为2n的合法括号序列个数
可以联系卡特兰数进行求解会非常方便。
用递推的思路可以得到方程f[n]=f[n]*f[0]+f[n-1]*f[1]+f[n-2]*f[2]……..
可以进行根据该方程进行递推
》》》》N个节点的二叉树的不同形态数喂卡特兰数的第N个

递归

汉诺塔

非常经典递归的问题。
对于当前N各盘子,可分解为讲上面n-1个小盘子移到中间盘,再将最下面的盘子移到目标盘子,再讲中间n-1的小盘子移到目标盘。不断进行递归即可求解。

分治

将问题分为多个规模较小的子问题进行求解在合并。

归并排序

归并排序是分治一个非常经典的利用。
大致代码:

void sort(int l,int r)
{
if(l==r)return;
int mid=(l+r)/2;
sort(1,mid);
sort(mid+1,r);
int tl=l;tr=mid+1;//指针
for(i=l to r)
if(tl>mid||(tr<=r&&a[tr]<=a[tl]))
b[i]=a[tr++];
else
b[i]=a[tl++];
}

典型例题

(1)给定2^n,2^n的棋盘,其中有一个坏点
你需要用若干个L型方块覆盖棋盘:不能覆盖刀坏点,其他点要被覆盖恰好一次。
将棋盘分为4份求解。(把正中间的L视为3个坏点,真正坏点所在的那一份不能用中间的坏点覆盖)
(2)给定一个序列,判断它是否是优美的。(优美:任取一个子区间,其中有至少一个只出现一次的数)
o(n^2)的方法
定义solve(l,r)
在[L,R]中找一个独一无二的数,位置为X,则
》任意跨越X的区间都符合题意
》》 递归solve(1,x-1)和solve(x,r)。
优化:从中间搜

二分

通过二分把最优化问题转化为判定性问题。

经典例题

NOIP2015跳石子。
主要思路为二分答案算出该答案所需移的石头。

倍增

当模拟某个过程一步步太慢,把模拟的步数二进制分解,优化复杂度。

经典例题

1)LCA(树最近公共祖先)
朴素思路:先使两个点跳到同一高度,在一步步往上跳。
倍增优化:将father[n]变为father[n][i](将n向上跳2^i步的祖先)
预处理:father[x][i+1]=fa[fa[x][i]][i]
调整深度的优化:

t=abs(deep[x]-deep[y])
for(i=lognmax to 1)
    if(t & (1<<i))//如果需要跳
      x=fa[x][i];  //跳                       

注意特判一个是另一个的祖先。
2)给定一个整数序列,多次询问一段区间中的最小值。
(线段树也可以 规避线段树)
预处理chart[x][i]表示区间[x,x+2^i)内的最小值。
chart[x][i+1]=min(chart[x][i],chart[x+2^i][i])
一次询问可以拆成两个长度为2^i的区间的并。
这种算法叫做稀疏表(sparse table)(st表)
3)一个长度为n的序列,序列中的数都是[0,25]内的整数
每次你可以选择序列中两个相邻的、同为x的数,把它们擦掉并在原位置写上x+1。 问可以得到的最大的数是多少。
、 首先最大的数一定是logn+25左右
、 其次对于任意一个左端点 l 和一个数v,如果存在【l,r】使得【l,r】能合并成v,这样的r是唯一的。

贪心

局部最优解合并为全局最优解

经典例题

(1)国王游戏
按照a*b排序从小到大即可
(2)给定一张 n 个点、m 条边的图,每个点和每条边有一个分数
Alice 和 Bob 轮流给图上的点染色,Alice 染红色,Bob 染蓝色,直到所有点都被染上色。
Alice 的分数为所有红点分数之和,加上两端点均为红色的边的分数之和;Bob 类似
双方都绝顶聪明,问最后 Alice 分数 - Bob 分数的值?
这道题的思路比较简单,如果一条边的两个点都被一个人染了,那么这个人就可以获得该条边的分值,如果分别被两个人染则谁都没有分。那么我们不妨将一条边的分数平摊到两个端点,两个人依次挑最大分值点即可。

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值