题意:有n个城市,m条道路,在每条路上有一个承载量,求从1到n城市最大承载量,找到一条路。
思路:Dijkstra过程中,每次求最长的边(即承载量最大),以最长的边去松弛,松弛的时候取较小值(即承载量)与dis数组比较,取较大的。注意初始化条件,先把所有的承载量都初始化为极小值,源点承载量设置为极大值。懒得写,直接在我的模板上改的。
//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
using namespace std;
const int MAXN = 1e5 + 6;
const int INF = 0x3f3f3f3f;
struct Edge
{
int from, to, dist; //起点,终点,距离
Edge(int u, int v, int w):from(u), to(v), dist(w) {}
};
struct Dijkstra
{
int n, m; //结点数,边数(包括反向弧)
vector<Edge> edges; //边表。edges[e]和edges[e^1]互为反向弧
vector<int> G[MAXN]; //邻接表,G[i][j]表示结点i的第j条边在edges数组中的序号
int vis[MAXN]; //标记数组
int d[MAXN]; //s到各个点的最短路
int pre[MAXN]; //上一条弧
void init(int n)
{
this->n = n;
edges.clear();
for (int i = 0; i <= n; i++) G[i].clear();
}
void add_edge(int from, int to, int dist)
{
edges.push_back(Edge(from, to, dist));
m = edges.size();
G[from].push_back(m - 1);
}
void dijkstra(int s)
{
for (int i = 0; i <= n; i++) d[i] = -INF;
d[s] = INF;
memset(vis, 0, sizeof(vis));
for (int i = 1; i <= n; i++)
{
int pos/*, MIN = INF*/, MAX = -INF;
for (int j = 1; j <= n; j++)
{
//if(!vis[j] && d[j] <= MIN) MIN = d[pos = j];
if(!vis[j] && d[j] >= MAX) MAX = d[pos = j];
}
vis[pos] = true;
for (int j = 0; j < G[pos].size(); j++)
{
Edge& e = edges[G[pos][j]];
/*if (d[e.to] > d[pos] + e.dist)
{
d[e.to] = d[pos] + e.dist;
pre[e.to] = G[pos][j];
}*/
d[e.to] = max(d[e.to], min(d[pos], e.dist));
}
}
}
};
Dijkstra solve;
int main()
{
int T, n, m, CASE = 1;
scanf("%d", &T);
while (~scanf("%d%d", &n, &m))
{
solve.init(n);
while (m--)
{
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
solve.add_edge(u, v, w);
solve.add_edge(v, u, w);
}
solve.dijkstra(1);
printf("Scenario #%d:\n%d\n\n", CASE++, solve.d[n]);
}
return 0;
}
/*
1
3 3
1 2 3
1 3 4
2 3 5
*/